2022-06-25 00:23:03 +08:00

357 lines
10 KiB
C++

/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifdef SPINE_UE4
#include "SpinePluginPrivatePCH.h"
#endif
#include <spine/IkConstraint.h>
#include <spine/IkConstraintData.h>
#include <spine/Skeleton.h>
#include <spine/Bone.h>
#include <spine/BoneData.h>
using namespace spine;
RTTI_IMPL(IkConstraint, Updatable)
void IkConstraint::apply(Bone &bone, float targetX, float targetY, bool compress, bool stretch, bool uniform, float alpha) {
Bone *p = bone.getParent();
float pa = p->_a, pb = p->_b, pc = p->_c, pd = p->_d;
float rotationIK = -bone._ashearX - bone._arotation;
float tx = 0, ty = 0;
if (!bone._appliedValid) bone.updateAppliedTransform();
switch(bone._data.getTransformMode()) {
case TransformMode_OnlyTranslation:
tx = targetX - bone._worldX;
ty = targetY - bone._worldY;
break;
case TransformMode_NoRotationOrReflection: {
rotationIK += MathUtil::atan2(pc, pa) * MathUtil::Rad_Deg;
float ps = MathUtil::abs(pa * pd - pb * pc) / (pa * pa + pc * pc);
pb = -pc * ps;
pd = pa * ps;
}
default:
float x = targetX - p->_worldX, y = targetY - p->_worldY;
float d = pa * pd - pb * pc;
tx = (x * pd - y * pb) / d - bone._ax;
ty = (y * pa - x * pc) / d - bone._ay;
}
rotationIK += MathUtil::atan2(ty, tx) * MathUtil::Rad_Deg;
if (bone._ascaleX < 0) rotationIK += 180;
if (rotationIK > 180) rotationIK -= 360;
else if (rotationIK < -180) rotationIK += 360;
float sx = bone._ascaleX;
float sy = bone._ascaleY;
if (compress || stretch) {
switch(bone._data.getTransformMode()) {
case TransformMode_NoScale:
case TransformMode_NoScaleOrReflection:
tx = targetX - bone._worldX;
ty = targetY - bone._worldY;
default: ;
}
float b = bone._data.getLength() * sx, dd = MathUtil::sqrt(tx * tx + ty * ty);
if (((compress && dd < b) || (stretch && dd > b)) && (b > 0.0001f)) {
float s = (dd / b - 1) * alpha + 1;
sx *= s;
if (uniform) sy *= s;
}
}
bone.updateWorldTransform(bone._ax, bone._ay, bone._arotation + rotationIK * alpha, sx, sy, bone._ashearX, bone._ashearY);
}
void IkConstraint::apply(Bone &parent, Bone &child, float targetX, float targetY, int bendDir, bool stretch, float softness, float alpha) {
float a, b, c, d;
float px, py, psx, sx, psy;
float cx, cy, csx, cwx, cwy;
int o1, o2, s2, u;
Bone *pp = parent.getParent();
float tx, ty, dx, dy, dd, l1, l2, a1, a2, r, td, sd, p;
float id, x, y;
if (alpha == 0) {
child.updateWorldTransform();
return;
}
if (!parent._appliedValid) parent.updateAppliedTransform();
if (!child._appliedValid) child.updateAppliedTransform();
px = parent._ax;
py = parent._ay;
psx = parent._ascaleX;
sx = psx;
psy = parent._ascaleY;
csx = child._ascaleX;
if (psx < 0) {
psx = -psx;
o1 = 180;
s2 = -1;
} else {
o1 = 0;
s2 = 1;
}
if (psy < 0) {
psy = -psy;
s2 = -s2;
}
if (csx < 0) {
csx = -csx;
o2 = 180;
} else
o2 = 0;
r = psx - psy;
cx = child._ax;
u = (r < 0 ? -r : r) <= 0.0001f;
if (!u) {
cy = 0;
cwx = parent._a * cx + parent._worldX;
cwy = parent._c * cx + parent._worldY;
} else {
cy = child._ay;
cwx = parent._a * cx + parent._b * cy + parent._worldX;
cwy = parent._c * cx + parent._d * cy + parent._worldY;
}
a = pp->_a;
b = pp->_b;
c = pp->_c;
d = pp->_d;
id = 1 / (a * d - b * c);
x = cwx - pp->_worldX;
y = cwy - pp->_worldY;
dx = (x * d - y * b) * id - px;
dy = (y * a - x * c) * id - py;
l1 = MathUtil::sqrt(dx * dx + dy * dy);
l2 = child._data.getLength() * csx;
if (l1 < 0.0001) {
apply(parent, targetX, targetY, false, stretch, false, alpha);
child.updateWorldTransform(cx, cy, 0, child._ascaleX, child._ascaleY, child._ashearX, child._ashearY);
return;
}
x = targetX - pp->_worldX;
y = targetY - pp->_worldY;
tx = (x * d - y * b) * id - px, ty = (y * a - x * c) * id - py;
dd = tx * tx + ty * ty;
if (softness != 0) {
softness *= psx * (csx + 1) / 2;
td = MathUtil::sqrt(dd), sd = td - l1 - l2 * psx + softness;
if (sd > 0) {
p = MathUtil::min(1.0f, sd / (softness * 2)) - 1;
p = (sd - softness * (1 - p * p)) / td;
tx -= p * tx;
ty -= p * ty;
dd = tx * tx + ty * ty;
}
}
if (u) {
float cosine;
l2 *= psx;
cosine = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2);
if (cosine < -1) cosine = -1;
else if (cosine > 1) {
cosine = 1;
if (stretch) sx *= (MathUtil::sqrt(dd) / (l1 + l2) - 1) * alpha + 1;
}
a2 = MathUtil::acos(cosine) * bendDir;
a = l1 + l2 * cosine;
b = l2 * MathUtil::sin(a2);
a1 = MathUtil::atan2(ty * a - tx * b, tx * a + ty * b);
} else {
a = psx * l2, b = psy * l2;
float aa = a * a, bb = b * b, ll = l1 * l1, ta = MathUtil::atan2(ty, tx);
float c0 = bb * ll + aa * dd - aa * bb, c1 = -2 * bb * l1, c2 = bb - aa;
d = c1 * c1 - 4 * c2 * c0;
if (d >= 0) {
float q = MathUtil::sqrt(d), r0, r1;
if (c1 < 0) q = -q;
q = -(c1 + q) / 2;
r0 = q / c2;
r1 = c0 / q;
r = MathUtil::abs(r0) < MathUtil::abs(r1) ? r0 : r1;
if (r * r <= dd) {
y = MathUtil::sqrt(dd - r * r) * bendDir;
a1 = ta - MathUtil::atan2(y, r);
a2 = MathUtil::atan2(y / psy, (r - l1) / psx);
goto break_outer;
}
}
{
float minAngle = MathUtil::Pi, minX = l1 - a, minDist = minX * minX, minY = 0;
float maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0;
c0 = -a * l1 / (aa - bb);
if (c0 >= -1 && c0 <= 1) {
c0 = MathUtil::acos(c0);
x = a * MathUtil::cos(c0) + l1;
y = b * MathUtil::sin(c0);
d = x * x + y * y;
if (d < minDist) {
minAngle = c0;
minDist = d;
minX = x;
minY = y;
}
if (d > maxDist) {
maxAngle = c0;
maxDist = d;
maxX = x;
maxY = y;
}
}
if (dd <= (minDist + maxDist) / 2) {
a1 = ta - MathUtil::atan2(minY * bendDir, minX);
a2 = minAngle * bendDir;
} else {
a1 = ta - MathUtil::atan2(maxY * bendDir, maxX);
a2 = maxAngle * bendDir;
}
}
}
break_outer:
{
float os = MathUtil::atan2(cy, cx) * s2;
a1 = (a1 - os) * MathUtil::Rad_Deg + o1 - parent._arotation;
if (a1 > 180) a1 -= 360;
else if (a1 < -180) a1 += 360;
parent.updateWorldTransform(px, py, parent._rotation + a1 * alpha, sx, parent._ascaleY, 0, 0);
a2 = ((a2 + os) * MathUtil::Rad_Deg - child._ashearX) * s2 + o2 - child._arotation;
if (a2 > 180) a2 -= 360;
else if (a2 < -180) a2 += 360;
child.updateWorldTransform(cx, cy, child._arotation + a2 * alpha, child._ascaleX, child._ascaleY, child._ashearX, child._ashearY);
}
}
IkConstraint::IkConstraint(IkConstraintData &data, Skeleton &skeleton) : Updatable(),
_data(data),
_bendDirection(data.getBendDirection()),
_compress(data.getCompress()),
_stretch(data.getStretch()),
_mix(data.getMix()),
_softness(data.getSoftness()),
_target(skeleton.findBone(
data.getTarget()->getName())),
_active(false)
{
_bones.ensureCapacity(_data.getBones().size());
for (size_t i = 0; i < _data.getBones().size(); i++) {
BoneData *boneData = _data.getBones()[i];
_bones.add(skeleton.findBone(boneData->getName()));
}
}
/// Applies the constraint to the constrained bones.
void IkConstraint::apply() {
update();
}
void IkConstraint::update() {
switch (_bones.size()) {
case 1: {
Bone *bone0 = _bones[0];
apply(*bone0, _target->getWorldX(), _target->getWorldY(), _compress, _stretch, _data._uniform, _mix);
}
break;
case 2: {
Bone *bone0 = _bones[0];
Bone *bone1 = _bones[1];
apply(*bone0, *bone1, _target->getWorldX(), _target->getWorldY(), _bendDirection, _stretch, _softness, _mix);
}
break;
}
}
int IkConstraint::getOrder() {
return _data.getOrder();
}
IkConstraintData &IkConstraint::getData() {
return _data;
}
Vector<Bone *> &IkConstraint::getBones() {
return _bones;
}
Bone *IkConstraint::getTarget() {
return _target;
}
void IkConstraint::setTarget(Bone *inValue) {
_target = inValue;
}
int IkConstraint::getBendDirection() {
return _bendDirection;
}
void IkConstraint::setBendDirection(int inValue) {
_bendDirection = inValue;
}
float IkConstraint::getMix() {
return _mix;
}
void IkConstraint::setMix(float inValue) {
_mix = inValue;
}
bool IkConstraint::getStretch() {
return _stretch;
}
void IkConstraint::setStretch(bool inValue) {
_stretch = inValue;
}
bool IkConstraint::getCompress() {
return _compress;
}
void IkConstraint::setCompress(bool inValue) {
_compress = inValue;
}
bool IkConstraint::isActive() {
return _active;
}
void IkConstraint::setActive(bool inValue) {
_active = inValue;
}
float IkConstraint::getSoftness() {
return _softness;
}
void IkConstraint::setSoftness(float inValue) {
_softness = inValue;
}