/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #ifdef SPINE_UE4 #include "SpinePluginPrivatePCH.h" #endif #include #include #include #include #include using namespace spine; RTTI_IMPL(IkConstraint, Updatable) void IkConstraint::apply(Bone &bone, float targetX, float targetY, bool compress, bool stretch, bool uniform, float alpha) { Bone *p = bone.getParent(); float pa = p->_a, pb = p->_b, pc = p->_c, pd = p->_d; float rotationIK = -bone._ashearX - bone._arotation; float tx = 0, ty = 0; if (!bone._appliedValid) bone.updateAppliedTransform(); switch(bone._data.getTransformMode()) { case TransformMode_OnlyTranslation: tx = targetX - bone._worldX; ty = targetY - bone._worldY; break; case TransformMode_NoRotationOrReflection: { rotationIK += MathUtil::atan2(pc, pa) * MathUtil::Rad_Deg; float ps = MathUtil::abs(pa * pd - pb * pc) / (pa * pa + pc * pc); pb = -pc * ps; pd = pa * ps; } default: float x = targetX - p->_worldX, y = targetY - p->_worldY; float d = pa * pd - pb * pc; tx = (x * pd - y * pb) / d - bone._ax; ty = (y * pa - x * pc) / d - bone._ay; } rotationIK += MathUtil::atan2(ty, tx) * MathUtil::Rad_Deg; if (bone._ascaleX < 0) rotationIK += 180; if (rotationIK > 180) rotationIK -= 360; else if (rotationIK < -180) rotationIK += 360; float sx = bone._ascaleX; float sy = bone._ascaleY; if (compress || stretch) { switch(bone._data.getTransformMode()) { case TransformMode_NoScale: case TransformMode_NoScaleOrReflection: tx = targetX - bone._worldX; ty = targetY - bone._worldY; default: ; } float b = bone._data.getLength() * sx, dd = MathUtil::sqrt(tx * tx + ty * ty); if (((compress && dd < b) || (stretch && dd > b)) && (b > 0.0001f)) { float s = (dd / b - 1) * alpha + 1; sx *= s; if (uniform) sy *= s; } } bone.updateWorldTransform(bone._ax, bone._ay, bone._arotation + rotationIK * alpha, sx, sy, bone._ashearX, bone._ashearY); } void IkConstraint::apply(Bone &parent, Bone &child, float targetX, float targetY, int bendDir, bool stretch, float softness, float alpha) { float a, b, c, d; float px, py, psx, sx, psy; float cx, cy, csx, cwx, cwy; int o1, o2, s2, u; Bone *pp = parent.getParent(); float tx, ty, dx, dy, dd, l1, l2, a1, a2, r, td, sd, p; float id, x, y; if (alpha == 0) { child.updateWorldTransform(); return; } if (!parent._appliedValid) parent.updateAppliedTransform(); if (!child._appliedValid) child.updateAppliedTransform(); px = parent._ax; py = parent._ay; psx = parent._ascaleX; sx = psx; psy = parent._ascaleY; csx = child._ascaleX; if (psx < 0) { psx = -psx; o1 = 180; s2 = -1; } else { o1 = 0; s2 = 1; } if (psy < 0) { psy = -psy; s2 = -s2; } if (csx < 0) { csx = -csx; o2 = 180; } else o2 = 0; r = psx - psy; cx = child._ax; u = (r < 0 ? -r : r) <= 0.0001f; if (!u) { cy = 0; cwx = parent._a * cx + parent._worldX; cwy = parent._c * cx + parent._worldY; } else { cy = child._ay; cwx = parent._a * cx + parent._b * cy + parent._worldX; cwy = parent._c * cx + parent._d * cy + parent._worldY; } a = pp->_a; b = pp->_b; c = pp->_c; d = pp->_d; id = 1 / (a * d - b * c); x = cwx - pp->_worldX; y = cwy - pp->_worldY; dx = (x * d - y * b) * id - px; dy = (y * a - x * c) * id - py; l1 = MathUtil::sqrt(dx * dx + dy * dy); l2 = child._data.getLength() * csx; if (l1 < 0.0001) { apply(parent, targetX, targetY, false, stretch, false, alpha); child.updateWorldTransform(cx, cy, 0, child._ascaleX, child._ascaleY, child._ashearX, child._ashearY); return; } x = targetX - pp->_worldX; y = targetY - pp->_worldY; tx = (x * d - y * b) * id - px, ty = (y * a - x * c) * id - py; dd = tx * tx + ty * ty; if (softness != 0) { softness *= psx * (csx + 1) / 2; td = MathUtil::sqrt(dd), sd = td - l1 - l2 * psx + softness; if (sd > 0) { p = MathUtil::min(1.0f, sd / (softness * 2)) - 1; p = (sd - softness * (1 - p * p)) / td; tx -= p * tx; ty -= p * ty; dd = tx * tx + ty * ty; } } if (u) { float cosine; l2 *= psx; cosine = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2); if (cosine < -1) cosine = -1; else if (cosine > 1) { cosine = 1; if (stretch) sx *= (MathUtil::sqrt(dd) / (l1 + l2) - 1) * alpha + 1; } a2 = MathUtil::acos(cosine) * bendDir; a = l1 + l2 * cosine; b = l2 * MathUtil::sin(a2); a1 = MathUtil::atan2(ty * a - tx * b, tx * a + ty * b); } else { a = psx * l2, b = psy * l2; float aa = a * a, bb = b * b, ll = l1 * l1, ta = MathUtil::atan2(ty, tx); float c0 = bb * ll + aa * dd - aa * bb, c1 = -2 * bb * l1, c2 = bb - aa; d = c1 * c1 - 4 * c2 * c0; if (d >= 0) { float q = MathUtil::sqrt(d), r0, r1; if (c1 < 0) q = -q; q = -(c1 + q) / 2; r0 = q / c2; r1 = c0 / q; r = MathUtil::abs(r0) < MathUtil::abs(r1) ? r0 : r1; if (r * r <= dd) { y = MathUtil::sqrt(dd - r * r) * bendDir; a1 = ta - MathUtil::atan2(y, r); a2 = MathUtil::atan2(y / psy, (r - l1) / psx); goto break_outer; } } { float minAngle = MathUtil::Pi, minX = l1 - a, minDist = minX * minX, minY = 0; float maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0; c0 = -a * l1 / (aa - bb); if (c0 >= -1 && c0 <= 1) { c0 = MathUtil::acos(c0); x = a * MathUtil::cos(c0) + l1; y = b * MathUtil::sin(c0); d = x * x + y * y; if (d < minDist) { minAngle = c0; minDist = d; minX = x; minY = y; } if (d > maxDist) { maxAngle = c0; maxDist = d; maxX = x; maxY = y; } } if (dd <= (minDist + maxDist) / 2) { a1 = ta - MathUtil::atan2(minY * bendDir, minX); a2 = minAngle * bendDir; } else { a1 = ta - MathUtil::atan2(maxY * bendDir, maxX); a2 = maxAngle * bendDir; } } } break_outer: { float os = MathUtil::atan2(cy, cx) * s2; a1 = (a1 - os) * MathUtil::Rad_Deg + o1 - parent._arotation; if (a1 > 180) a1 -= 360; else if (a1 < -180) a1 += 360; parent.updateWorldTransform(px, py, parent._rotation + a1 * alpha, sx, parent._ascaleY, 0, 0); a2 = ((a2 + os) * MathUtil::Rad_Deg - child._ashearX) * s2 + o2 - child._arotation; if (a2 > 180) a2 -= 360; else if (a2 < -180) a2 += 360; child.updateWorldTransform(cx, cy, child._arotation + a2 * alpha, child._ascaleX, child._ascaleY, child._ashearX, child._ashearY); } } IkConstraint::IkConstraint(IkConstraintData &data, Skeleton &skeleton) : Updatable(), _data(data), _bendDirection(data.getBendDirection()), _compress(data.getCompress()), _stretch(data.getStretch()), _mix(data.getMix()), _softness(data.getSoftness()), _target(skeleton.findBone( data.getTarget()->getName())), _active(false) { _bones.ensureCapacity(_data.getBones().size()); for (size_t i = 0; i < _data.getBones().size(); i++) { BoneData *boneData = _data.getBones()[i]; _bones.add(skeleton.findBone(boneData->getName())); } } /// Applies the constraint to the constrained bones. void IkConstraint::apply() { update(); } void IkConstraint::update() { switch (_bones.size()) { case 1: { Bone *bone0 = _bones[0]; apply(*bone0, _target->getWorldX(), _target->getWorldY(), _compress, _stretch, _data._uniform, _mix); } break; case 2: { Bone *bone0 = _bones[0]; Bone *bone1 = _bones[1]; apply(*bone0, *bone1, _target->getWorldX(), _target->getWorldY(), _bendDirection, _stretch, _softness, _mix); } break; } } int IkConstraint::getOrder() { return _data.getOrder(); } IkConstraintData &IkConstraint::getData() { return _data; } Vector &IkConstraint::getBones() { return _bones; } Bone *IkConstraint::getTarget() { return _target; } void IkConstraint::setTarget(Bone *inValue) { _target = inValue; } int IkConstraint::getBendDirection() { return _bendDirection; } void IkConstraint::setBendDirection(int inValue) { _bendDirection = inValue; } float IkConstraint::getMix() { return _mix; } void IkConstraint::setMix(float inValue) { _mix = inValue; } bool IkConstraint::getStretch() { return _stretch; } void IkConstraint::setStretch(bool inValue) { _stretch = inValue; } bool IkConstraint::getCompress() { return _compress; } void IkConstraint::setCompress(bool inValue) { _compress = inValue; } bool IkConstraint::isActive() { return _active; } void IkConstraint::setActive(bool inValue) { _active = inValue; } float IkConstraint::getSoftness() { return _softness; } void IkConstraint::setSoftness(float inValue) { _softness = inValue; }