mirror of
https://github.com/genxium/DelayNoMore
synced 2024-12-25 03:08:57 +00:00
Simplified resolv_tailored.
This commit is contained in:
parent
04d8013cbb
commit
b9beee549f
@ -518,7 +518,7 @@
|
||||
"array": [
|
||||
0,
|
||||
0,
|
||||
210.43877906529718,
|
||||
210.4441731196186,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
|
File diff suppressed because one or more lines are too long
@ -7,7 +7,7 @@ import (
|
||||
)
|
||||
|
||||
const (
|
||||
MAX_FLOAT64 = 1.7e+308
|
||||
MAX_FLOAT64 = resolv.MaxFloat64
|
||||
MAX_INT32 = int32(999999999)
|
||||
COLLISION_PLAYER_INDEX_PREFIX = (1 << 17)
|
||||
COLLISION_BARRIER_INDEX_PREFIX = (1 << 16)
|
||||
|
@ -135,10 +135,10 @@ func (cc *Collision) SlideAgainstCell(cell *Cell, avoidTags ...string) Vector {
|
||||
diffX := oX - ccX
|
||||
diffY := oY - ccY
|
||||
|
||||
left := sp.Cell(collidingCell.X-1, collidingCell.Y)
|
||||
right := sp.Cell(collidingCell.X+1, collidingCell.Y)
|
||||
up := sp.Cell(collidingCell.X, collidingCell.Y-1)
|
||||
down := sp.Cell(collidingCell.X, collidingCell.Y+1)
|
||||
left := sp.GetCell(collidingCell.X-1, collidingCell.Y)
|
||||
right := sp.GetCell(collidingCell.X+1, collidingCell.Y)
|
||||
up := sp.GetCell(collidingCell.X, collidingCell.Y-1)
|
||||
down := sp.GetCell(collidingCell.X, collidingCell.Y+1)
|
||||
|
||||
slide := Vector{0, 0}
|
||||
|
||||
|
@ -1,9 +1,5 @@
|
||||
package resolv
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// Object represents an object that can be spread across one or more Cells in a Space. An Object is essentially an AABB (Axis-Aligned Bounding Box) Rectangle.
|
||||
type Object struct {
|
||||
Shape Shape // A shape for more specific collision-checking.
|
||||
@ -93,7 +89,7 @@ func (obj *Object) Update() {
|
||||
|
||||
for x := cx; x <= ex; x++ {
|
||||
|
||||
c := obj.Space.Cell(x, y)
|
||||
c := obj.Space.GetCell(x, y)
|
||||
|
||||
if c != nil {
|
||||
c.register(obj)
|
||||
@ -256,15 +252,15 @@ func (obj *Object) CheckAllWithHolder(dx, dy float64, cc *Collision) bool {
|
||||
cc.checkingObject = obj
|
||||
|
||||
if dx < 0 {
|
||||
dx = math.Min(dx, -1)
|
||||
dx = Min(dx, -1)
|
||||
} else if dx > 0 {
|
||||
dx = math.Max(dx, 1)
|
||||
dx = Max(dx, 1)
|
||||
}
|
||||
|
||||
if dy < 0 {
|
||||
dy = math.Min(dy, -1)
|
||||
dy = Min(dy, -1)
|
||||
} else if dy > 0 {
|
||||
dy = math.Max(dy, 1)
|
||||
dy = Max(dy, 1)
|
||||
}
|
||||
|
||||
cc.dx = dx
|
||||
@ -279,7 +275,7 @@ func (obj *Object) CheckAllWithHolder(dx, dy float64, cc *Collision) bool {
|
||||
|
||||
for x := cx; x <= ex; x++ {
|
||||
|
||||
if c := obj.Space.Cell(x, y); c != nil {
|
||||
if c := obj.Space.GetCell(x, y); c != nil {
|
||||
|
||||
rb := c.Objects
|
||||
for i := rb.StFrameId; i < rb.EdFrameId; i++ {
|
||||
|
@ -1,9 +1,10 @@
|
||||
package resolv
|
||||
|
||||
const (
|
||||
RING_BUFF_CONSECUTIVE_SET = int32(0)
|
||||
RING_BUFF_NON_CONSECUTIVE_SET = int32(1)
|
||||
RING_BUFF_FAILED_TO_SET = int32(2)
|
||||
// Declare type "int32" explicitly to prevent go2cs from transpiling them to "var"
|
||||
RING_BUFF_CONSECUTIVE_SET int32 = 0
|
||||
RING_BUFF_NON_CONSECUTIVE_SET int32 = 1
|
||||
RING_BUFF_FAILED_TO_SET int32 = 2
|
||||
)
|
||||
|
||||
type AnyObj interface{}
|
||||
|
@ -1,9 +1,5 @@
|
||||
package resolv
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
type Shape interface {
|
||||
// Intersection tests to see if a Shape intersects with the other given Shape. dx and dy are delta movement variables indicating
|
||||
// movement to be applied before the intersection check (thereby allowing you to see if a Shape would collide with another if it
|
||||
@ -187,7 +183,7 @@ func (cp *ConvexPolygon) Bounds() (Vector, Vector) {
|
||||
transformed := cp.Transformed()
|
||||
|
||||
topLeft := Vector{transformed[0][0], transformed[0][1]}
|
||||
bottomRight := topLeft.Clone()
|
||||
bottomRight := Vector{transformed[0][0], transformed[0][1]}
|
||||
|
||||
for i := 0; i < len(transformed); i++ {
|
||||
|
||||
@ -224,8 +220,8 @@ func (cp *ConvexPolygon) SetPosition(x, y float64) {
|
||||
// SetPositionVec allows you to set the position of the ConvexPolygon using a Vector. The offset of the vertices compared to the X and Y
|
||||
// position is relative to however you initially defined the polygon and added the vertices.
|
||||
func (cp *ConvexPolygon) SetPositionVec(vec Vector) {
|
||||
cp.X = vec.X()
|
||||
cp.Y = vec.Y()
|
||||
cp.X = vec.GetX()
|
||||
cp.Y = vec.GetY()
|
||||
}
|
||||
|
||||
// Move translates the ConvexPolygon by the designated X and Y values.
|
||||
@ -236,8 +232,8 @@ func (cp *ConvexPolygon) Move(x, y float64) {
|
||||
|
||||
// MoveVec translates the ConvexPolygon by the designated Vector.
|
||||
func (cp *ConvexPolygon) MoveVec(vec Vector) {
|
||||
cp.X += vec.X()
|
||||
cp.Y += vec.Y()
|
||||
cp.X += vec.GetX()
|
||||
cp.Y += vec.GetY()
|
||||
}
|
||||
|
||||
// SATAxes returns the axes of the ConvexPolygon for SAT intersection testing.
|
||||
@ -403,22 +399,3 @@ func NewRectangle(x, y, w, h float64) *ConvexPolygon {
|
||||
x, y+h,
|
||||
)
|
||||
}
|
||||
|
||||
type Projection struct {
|
||||
Min, Max float64
|
||||
}
|
||||
|
||||
// Overlapping returns whether a Projection is overlapping with the other, provided Projection. Credit to https://www.sevenson.com.au/programming/sat/
|
||||
func (projection Projection) Overlapping(other Projection) bool {
|
||||
return projection.Overlap(other) > 0
|
||||
}
|
||||
|
||||
// Overlap returns the amount that a Projection is overlapping with the other, provided Projection. Credit to https://dyn4j.org/2010/01/sat/#sat-nointer
|
||||
func (projection Projection) Overlap(other Projection) float64 {
|
||||
return math.Min(projection.Max, other.Max) - math.Max(projection.Min, other.Min)
|
||||
}
|
||||
|
||||
// IsInside returns whether the Projection is wholly inside of the other, provided Projection.
|
||||
func (projection Projection) IsInside(other Projection) bool {
|
||||
return projection.Min >= other.Min && projection.Max <= other.Max
|
||||
}
|
||||
|
112
resolv_tailored/simple_math.go
Normal file
112
resolv_tailored/simple_math.go
Normal file
@ -0,0 +1,112 @@
|
||||
package resolv
|
||||
|
||||
import "unsafe"
|
||||
|
||||
const (
|
||||
uvnan = 0x7FF8000000000001
|
||||
uvinf = 0x7FF0000000000000
|
||||
uvneginf = 0xFFF0000000000000
|
||||
uvone = 0x3FF0000000000000
|
||||
mask = 0x7FF
|
||||
shift = 64 - 11 - 1
|
||||
bias = 1023
|
||||
signMask = 1 << 63
|
||||
fracMask = 1<<shift - 1
|
||||
MaxFloat64 = 1.79e+308
|
||||
magic32 = 0x5f3759df
|
||||
magic64 = 0x5fe6eb50c7b537a9
|
||||
)
|
||||
|
||||
func Max(a, b float64) float64 {
|
||||
if a > b {
|
||||
return a
|
||||
} else {
|
||||
return b
|
||||
}
|
||||
}
|
||||
|
||||
func Min(a, b float64) float64 {
|
||||
if a < b {
|
||||
return a
|
||||
} else {
|
||||
return b
|
||||
}
|
||||
}
|
||||
|
||||
func Floor(x float64) float64 {
|
||||
if x == 0 || IsInf(x, 0) || IsNaN(x) {
|
||||
return x
|
||||
}
|
||||
if x < 0 {
|
||||
d, fract := Modf(-x)
|
||||
if fract != 0.0 {
|
||||
d = d + 1
|
||||
}
|
||||
return -d
|
||||
}
|
||||
d, _ := Modf(x)
|
||||
return d
|
||||
}
|
||||
|
||||
func Modf(f float64) (outval float64, frac float64) {
|
||||
if f < 1 {
|
||||
if f < 0 {
|
||||
outval1, frac1 := Modf(-f)
|
||||
return -outval1, -frac1
|
||||
} else if f == 0 {
|
||||
return f, f // Return -0, -0 when f == -0
|
||||
}
|
||||
return 0, f
|
||||
}
|
||||
|
||||
x := Float64bits(f)
|
||||
e := ((uint)(x>>shift))&mask - bias
|
||||
|
||||
// Keep the top 12+e bits, the integer part; clear the rest.
|
||||
if e < 64-12 {
|
||||
x &^= 1<<(64-12-e) - 1
|
||||
}
|
||||
outval = Float64frombits(x)
|
||||
frac = f - outval
|
||||
return
|
||||
}
|
||||
|
||||
func Float32bits(f float32) uint32 { return *(*uint32)(unsafe.Pointer(&f)) }
|
||||
func Float32frombits(b uint32) float32 { return *(*float32)(unsafe.Pointer(&b)) }
|
||||
func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
|
||||
func Float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }
|
||||
|
||||
func NaN() float64 { return Float64frombits(uvnan) }
|
||||
|
||||
func IsNaN(f float64) (is bool) {
|
||||
return f != f
|
||||
}
|
||||
|
||||
func IsInf(f float64, sign int) bool {
|
||||
return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64
|
||||
}
|
||||
|
||||
// FastInvSqrt reference https://medium.com/@adrien.za/fast-inverse-square-root-in-go-and-javascript-for-fun-6b891e74e5a8
|
||||
func FastInvSqrt32(n float32) float32 {
|
||||
if n < 0 {
|
||||
return float32(NaN())
|
||||
}
|
||||
n2, th := n*0.5, float32(1.5)
|
||||
b := Float32bits(n)
|
||||
b = magic32 - (b >> 1)
|
||||
f := Float32frombits(b)
|
||||
f *= th - (n2 * f * f)
|
||||
return f
|
||||
}
|
||||
|
||||
func FastInvSqrt64(n float64) float64 {
|
||||
if n < 0 {
|
||||
return NaN()
|
||||
}
|
||||
n2, th := n*0.5, float64(1.5)
|
||||
b := Float64bits(n)
|
||||
b = magic64 - (b >> 1)
|
||||
f := Float64frombits(b)
|
||||
f *= th - (n2 * f * f)
|
||||
return f
|
||||
}
|
@ -1,9 +1,5 @@
|
||||
package resolv
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
|
||||
// Space represents a collision space. Internally, each Space contains a 2D array of Cells, with each Cell being the same size. Cells contain information on which
|
||||
// Objects occupy those spaces.
|
||||
type Space struct {
|
||||
@ -128,9 +124,7 @@ func (sp *Space) Resize(width, height int) {
|
||||
}
|
||||
}
|
||||
|
||||
// Cell returns the Cell at the given cellular / spatial (not world) X and Y position in the Space. If the X and Y position are
|
||||
// out of bounds, Cell() will return nil.
|
||||
func (sp *Space) Cell(x, y int) *Cell {
|
||||
func (sp *Space) GetCell(x, y int) *Cell {
|
||||
|
||||
if y >= 0 && y < len(sp.Cells) && x >= 0 && x < len(sp.Cells[y]) {
|
||||
return sp.Cells[y][x]
|
||||
@ -147,7 +141,7 @@ func (sp *Space) CheckCells(x, y, w, h int, tags ...string) *Object {
|
||||
|
||||
for iy := y; iy < y+h; iy++ {
|
||||
|
||||
cell := sp.Cell(ix, iy)
|
||||
cell := sp.GetCell(ix, iy)
|
||||
|
||||
if cell != nil {
|
||||
rb := cell.Objects
|
||||
@ -205,8 +199,8 @@ func (sp *Space) UnregisterAllObjects() {
|
||||
// WorldToSpace converts from a world position (x, y) to a position in the Space (a grid-based position).
|
||||
func (sp *Space) WorldToSpace(x, y float64) (int, int) {
|
||||
// [WARNING] DON'T use "int(...)" syntax to convert float to int, it's not supported by go2cs!
|
||||
var fx int = (int)(math.Floor(x / float64(sp.CellWidth)))
|
||||
var fy int = (int)(math.Floor(y / float64(sp.CellHeight)))
|
||||
var fx int = (int)(Floor(x / float64(sp.CellWidth)))
|
||||
var fy int = (int)(Floor(y / float64(sp.CellHeight)))
|
||||
return fx, fy
|
||||
}
|
||||
|
||||
@ -233,8 +227,8 @@ func (sp *Space) Width() int {
|
||||
func (sp *Space) CellsInLine(startX, startY, endX, endY int) []*Cell {
|
||||
|
||||
cells := []*Cell{}
|
||||
cell := sp.Cell(startX, startY)
|
||||
endCell := sp.Cell(endX, endY)
|
||||
cell := sp.GetCell(startX, startY)
|
||||
endCell := sp.GetCell(endX, endY)
|
||||
|
||||
if cell != nil && endCell != nil {
|
||||
|
||||
@ -263,7 +257,7 @@ func (sp *Space) CellsInLine(startX, startY, endX, endY int) []*Cell {
|
||||
}
|
||||
|
||||
cx, cy := sp.WorldToSpace(p[0], p[1])
|
||||
c := sp.Cell(cx, cy)
|
||||
c := sp.GetCell(cx, cy)
|
||||
if c != cell {
|
||||
cell = c
|
||||
}
|
||||
|
@ -1,8 +1,6 @@
|
||||
package resolv
|
||||
|
||||
import (
|
||||
"math"
|
||||
)
|
||||
import "math"
|
||||
|
||||
// Vector is the definition of a row vector that contains scalars as
|
||||
// 64 bit floats
|
||||
@ -14,35 +12,13 @@ type Axis int
|
||||
const (
|
||||
// the consts below are used to represent vector axis, they are useful
|
||||
// to lookup values within the vector.
|
||||
X Axis = iota
|
||||
Y
|
||||
Z
|
||||
X Axis = 0
|
||||
Y Axis = 1
|
||||
Z Axis = 2
|
||||
)
|
||||
|
||||
// Clone a vector
|
||||
func Clone(v Vector) Vector {
|
||||
return v.Clone()
|
||||
}
|
||||
|
||||
// Clone a vector
|
||||
func (v Vector) Clone() Vector {
|
||||
clone := make(Vector, len(v))
|
||||
copy(clone, v)
|
||||
return clone
|
||||
}
|
||||
|
||||
// Magnitude of a vector
|
||||
func Magnitude(v Vector) float64 {
|
||||
return v.Magnitude()
|
||||
}
|
||||
|
||||
// Magnitude of a vector
|
||||
func (v Vector) Magnitude() float64 {
|
||||
return math.Sqrt(v.Magnitude2())
|
||||
}
|
||||
|
||||
func (v Vector) Magnitude2() float64 {
|
||||
var result float64
|
||||
var result float64 = 0.
|
||||
|
||||
for _, scalar := range v {
|
||||
result += scalar * scalar
|
||||
@ -51,21 +27,19 @@ func (v Vector) Magnitude2() float64 {
|
||||
return result
|
||||
}
|
||||
|
||||
// Unit returns a direction vector with the length of one.
|
||||
func Unit(v Vector) Vector {
|
||||
return v.Clone().Unit()
|
||||
}
|
||||
|
||||
// Unit returns a direction vector with the length of one.
|
||||
func (v Vector) Unit() Vector {
|
||||
l := v.Magnitude()
|
||||
|
||||
if l < 1e-8 {
|
||||
l2 := v.Magnitude2()
|
||||
if l2 < 1e-16 {
|
||||
return v
|
||||
}
|
||||
|
||||
l := math.Sqrt(l2)
|
||||
//inv := FastInvSqrt64(l2) // "Fast Inverse Square Root" is arch dependent, it's by far non-trivial to use it in Golang as well as make it feasible in the transpiled JavaScript.
|
||||
|
||||
for i := 0; i < len(v); i++ {
|
||||
v[i] = v[i] / l
|
||||
//v[i] = v[i] * inv
|
||||
}
|
||||
|
||||
return v
|
||||
@ -73,7 +47,7 @@ func (v Vector) Unit() Vector {
|
||||
|
||||
// X is corresponding to doing a v[0] lookup, if index 0 does not exist yet, a
|
||||
// 0 will be returned instead
|
||||
func (v Vector) X() float64 {
|
||||
func (v Vector) GetX() float64 {
|
||||
if len(v) < 1 {
|
||||
return 0.
|
||||
}
|
||||
@ -83,7 +57,7 @@ func (v Vector) X() float64 {
|
||||
|
||||
// Y is corresponding to doing a v[1] lookup, if index 1 does not exist yet, a
|
||||
// 0 will be returned instead
|
||||
func (v Vector) Y() float64 {
|
||||
func (v Vector) GetY() float64 {
|
||||
if len(v) < 2 {
|
||||
return 0.
|
||||
}
|
||||
@ -93,7 +67,7 @@ func (v Vector) Y() float64 {
|
||||
|
||||
// Z is corresponding to doing a v[2] lookup, if index 2 does not exist yet, a
|
||||
// 0 will be returned instead
|
||||
func (v Vector) Z() float64 {
|
||||
func (v Vector) GetZ() float64 {
|
||||
if len(v) < 3 {
|
||||
return 0.
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user