#pragma once #include "Memory.h" #include // std::max #include // std::uninitialized_fill // dynamic_array - simplified version of std::vector // // features: // . always uses memcpy for copying elements. Your data structures must be simple and can't have internal pointers / rely on copy constructor. // . EASTL like push_back(void) implementation // Existing std STL implementations implement insertion operations by copying from an element. // For example, resize(size() + 1) creates a throw-away temporary object. // There is no way in existing std STL implementations to add an element to a container without implicitly or // explicitly providing one to copy from (aside from some existing POD optimizations). // For expensive-to-construct objects this creates a potentially serious performance problem. // . grows X2 on reallocation // . small code footprint // . clear actually deallocates memory // . resize does NOT initialize members! // // Changelog: // Added pop_back() // Added assign() // Added clear() - frees the data, use resize(0) to clear w/o freeing // zero allocation for empty array // namespace il2cpp { namespace utils { template struct AlignOfType { enum { align = ALIGN_OF(T) }; }; template::align> struct dynamic_array { public: enum { align = ALIGN }; typedef T *iterator; typedef const T *const_iterator; typedef T value_type; typedef size_t size_type; typedef size_t difference_type; typedef T &reference; typedef const T &const_reference; public: dynamic_array() : m_data(NULL), m_size(0), m_capacity(0) { } explicit dynamic_array(size_t size) : m_size(size), m_capacity(size) { m_data = allocate(size); } dynamic_array(size_t size, T const &init_value) : m_size(size), m_capacity(size) { m_data = allocate(size); std::uninitialized_fill(m_data, m_data + size, init_value); } ~dynamic_array() { if (owns_data()) m_data = deallocate(m_data); } dynamic_array(const dynamic_array &other) : m_size(0), m_capacity(0) { m_data = NULL; assign(other.begin(), other.end()); } dynamic_array &operator=(const dynamic_array &other) { // should not allocate memory unless we have to if (&other != this) assign(other.begin(), other.end()); return *this; } void clear() { if (owns_data()) m_data = deallocate(m_data); m_size = 0; m_capacity = 0; } void assign(const_iterator begin, const_iterator end) { Assert(begin <= end); resize_uninitialized(end - begin); memcpy(m_data, begin, m_size * sizeof(T)); } iterator erase(iterator input_begin, iterator input_end) { Assert(input_begin <= input_end); Assert(input_begin >= begin()); Assert(input_end <= end()); size_t leftOverSize = end() - input_end; memmove(input_begin, input_end, leftOverSize * sizeof(T)); m_size -= input_end - input_begin; return input_begin; } iterator erase(iterator it) { return erase(it, it + 1); } iterator erase_swap_back(iterator it) { m_size--; memcpy(it, end(), sizeof(T)); return it; } iterator insert(iterator insert_before, const_iterator input_begin, const_iterator input_end) { Assert(input_begin <= input_end); Assert(insert_before >= begin()); Assert(insert_before <= end()); // resize (make sure that insertBefore does not get invalid in the meantime because of a reallocation) size_t insert_before_index = insert_before - begin(); size_t elements_to_be_moved = size() - insert_before_index; resize_uninitialized((input_end - input_begin) + size(), true); insert_before = begin() + insert_before_index; size_t insertsize = input_end - input_begin; // move to the end of where the inserted data will be memmove(insert_before + insertsize, insert_before, elements_to_be_moved * sizeof(T)); // inject input data in the hole we just created memcpy(insert_before, input_begin, insertsize * sizeof(T)); return insert_before; } iterator insert(iterator insertBefore, const T &t) { return insert(insertBefore, &t, &t + 1); } void swap(dynamic_array &other) throw () { std::swap(m_data, other.m_data); std::swap(m_size, other.m_size); std::swap(m_capacity, other.m_capacity); } // Returns the memory to the object. // This does not call the constructor for the newly added element. // You are expected to initialize all member variables of the returned data. T &push_back() { if (++m_size > capacity()) reserve(std::max(capacity() * 2, 1)); return back(); } // push_back but it also calls the constructor for the newly added element. T &push_back_construct() { if (++m_size > capacity()) reserve(std::max(capacity() * 2, 1)); // construct T *ptr = &back(); new(ptr) T; return *ptr; } // push_back but assigns /t/ to the newly added element. void push_back(const T &t) { push_back() = t; } void pop_back() { Assert(m_size >= 1); m_size--; } void resize_uninitialized(size_t size, bool double_on_resize = false) { m_size = size; if (m_size <= capacity()) return; if (double_on_resize && size < capacity() * 2) size = capacity() * 2; reserve(size); } void resize_initialized(size_t size, const T &t = T(), bool double_on_resize = false) { if (size > capacity()) { size_t requested_size = size; if (double_on_resize && size < capacity() * 2) requested_size = capacity() * 2; reserve(requested_size); } if (size > m_size) std::uninitialized_fill(m_data + m_size, m_data + size, t); m_size = size; } void reserve(size_t inCapacity) { if (capacity() >= inCapacity) return; if (owns_data()) { Assert((inCapacity & k_reference_bit) == 0 && "Dynamic array capacity overflow"); m_capacity = inCapacity; m_data = reallocate(m_data, inCapacity); } else { T *newData = allocate(inCapacity); memcpy(newData, m_data, m_size * sizeof(T)); // Invalidate old non-owned data, since using the data from two places is most likely a really really bad idea. #if IL2CPP_DEBUG memset(m_data, 0xCD, capacity() * sizeof(T)); #endif m_capacity = inCapacity; // and clear reference bit m_data = newData; } } void assign_external(T *begin, T *end) { if (owns_data()) m_data = deallocate(m_data); m_size = m_capacity = reinterpret_cast(end) - reinterpret_cast(begin); Assert(m_size < k_reference_bit); m_capacity |= k_reference_bit; m_data = begin; } void set_owns_data(bool ownsData) { if (ownsData) m_capacity &= ~k_reference_bit; else m_capacity |= k_reference_bit; } void shrink_to_fit() { if (owns_data()) { m_capacity = m_size; m_data = reallocate(m_data, m_size); } } const T &back() const { Assert(m_size != 0); return m_data[m_size - 1]; } const T &front() const { Assert(m_size != 0); return m_data[0]; } T &back() { Assert(m_size != 0); return m_data[m_size - 1]; } T &front() { Assert(m_size != 0); return m_data[0]; } T *data() { return m_data; } T const *data() const { return m_data; } bool empty() const { return m_size == 0; } size_t size() const { return m_size; } size_t capacity() const { return m_capacity & ~k_reference_bit; } T const &operator[](size_t index) const { Assert(index < m_size); return m_data[index]; } T &operator[](size_t index) { Assert(index < m_size); return m_data[index]; } T const *begin() const { return m_data; } T *begin() { return m_data; } T const *end() const { return m_data + m_size; } T *end() { return m_data + m_size; } bool owns_data() { return (m_capacity & k_reference_bit) == 0; } bool equals(const dynamic_array &other) const { if (m_size != other.m_size) return false; for (int i = 0; i < m_size; i++) { if (!(m_data[i] == other.m_data[i])) return false; } return true; } private: static const size_t k_reference_bit = (size_t)1 << (sizeof(size_t) * 8 - 1); T *allocate(size_t size) { return static_cast(IL2CPP_MALLOC_ALIGNED(size * sizeof(T), align)); } T *deallocate(T *data) { Assert(owns_data()); IL2CPP_FREE_ALIGNED(data); return NULL; } T *reallocate(T *data, size_t size) { Assert(owns_data()); return static_cast(IL2CPP_REALLOC_ALIGNED(data, size * sizeof(T), align)); } T *m_data; size_t m_size; size_t m_capacity; }; } //namespace il2cpp } //namespace utils