mirror of
https://gitee.com/ruanwujing/green-pack-cocos
synced 2025-01-13 22:41:20 +00:00
561 lines
16 KiB
Plaintext
561 lines
16 KiB
Plaintext
float dot2(vec2 p) {
|
|
return dot(p, p);
|
|
}
|
|
float sdCircle( vec2 p, float r )
|
|
{
|
|
return length(p) - r;
|
|
}
|
|
|
|
float sdRoundedBox( in vec2 p, in vec2 b, in vec4 r )
|
|
{
|
|
r.xy = (p.x>0.0)?r.xy : r.zw;
|
|
r.x = (p.y>0.0)?r.x : r.y;
|
|
vec2 q = abs(p)-b+r.x;
|
|
return min(max(q.x,q.y),0.0) + length(max(q,0.0)) - r.x;
|
|
}
|
|
|
|
float sdBox( in vec2 p, in vec2 b )
|
|
{
|
|
vec2 d = abs(p)-b;
|
|
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
|
|
}
|
|
|
|
float sdOrientedBox( in vec2 p, in vec2 a, in vec2 b, float th )
|
|
{
|
|
float l = length(b-a);
|
|
vec2 d = (b-a)/l;
|
|
vec2 q = (p-(a+b)*0.5);
|
|
q = mat2(d.x,-d.y,d.y,d.x)*q;
|
|
q = abs(q)-vec2(l,th)*0.5;
|
|
return length(max(q,0.0)) + min(max(q.x,q.y),0.0);
|
|
}
|
|
|
|
float sdSegment( in vec2 p, in vec2 a, in vec2 b )
|
|
{
|
|
vec2 pa = p-a, ba = b-a;
|
|
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
|
|
return length( pa - ba*h );
|
|
}
|
|
|
|
float ndot(vec2 a, vec2 b ) { return a.x*b.x - a.y*b.y; }
|
|
float sdRhombus( in vec2 p, in vec2 b )
|
|
{
|
|
p = abs(p);
|
|
float h = clamp( ndot(b-2.0*p,b)/dot(b,b), -1.0, 1.0 );
|
|
float d = length( p-0.5*b*vec2(1.0-h,1.0+h) );
|
|
return d * sign( p.x*b.y + p.y*b.x - b.x*b.y );
|
|
}
|
|
|
|
float sdTrapezoid( in vec2 p, in float r1, float r2, float he )
|
|
{
|
|
vec2 k1 = vec2(r2,he);
|
|
vec2 k2 = vec2(r2-r1,2.0*he);
|
|
p.x = abs(p.x);
|
|
vec2 ca = vec2(p.x-min(p.x,(p.y<0.0)?r1:r2), abs(p.y)-he);
|
|
vec2 cb = p - k1 + k2*clamp( dot(k1-p,k2)/dot2(k2), 0.0, 1.0 );
|
|
float s = (cb.x<0.0 && ca.y<0.0) ? -1.0 : 1.0;
|
|
return s*sqrt( min(dot2(ca),dot2(cb)) );
|
|
}
|
|
|
|
float sdParallelogram( in vec2 p, float wi, float he, float sk )
|
|
{
|
|
vec2 e = vec2(sk,he);
|
|
p = (p.y<0.0)?-p:p;
|
|
vec2 w = p - e; w.x -= clamp(w.x,-wi,wi);
|
|
vec2 d = vec2(dot(w,w), -w.y);
|
|
float s = p.x*e.y - p.y*e.x;
|
|
p = (s<0.0)?-p:p;
|
|
vec2 v = p - vec2(wi,0); v -= e*clamp(dot(v,e)/dot(e,e),-1.0,1.0);
|
|
d = min( d, vec2(dot(v,v), wi*he-abs(s)));
|
|
return sqrt(d.x)*sign(-d.y);
|
|
}
|
|
|
|
float sdEquilateralTriangle( in vec2 p, in float r )
|
|
{
|
|
const float k = sqrt(3.0);
|
|
p.x = abs(p.x) - r;
|
|
p.y = p.y + r/k;
|
|
if( p.x+k*p.y>0.0 ) p = vec2(p.x-k*p.y,-k*p.x-p.y)/2.0;
|
|
p.x -= clamp( p.x, -2.0*r, 0.0 );
|
|
return -length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdTriangleIsosceles( in vec2 p, in vec2 q )
|
|
{
|
|
p.x = abs(p.x);
|
|
vec2 a = p - q*clamp( dot(p,q)/dot(q,q), 0.0, 1.0 );
|
|
vec2 b = p - q*vec2( clamp( p.x/q.x, 0.0, 1.0 ), 1.0 );
|
|
float s = -sign( q.y );
|
|
vec2 d = min( vec2( dot(a,a), s*(p.x*q.y-p.y*q.x) ),
|
|
vec2( dot(b,b), s*(p.y-q.y) ));
|
|
return -sqrt(d.x)*sign(d.y);
|
|
}
|
|
|
|
float sdTriangle( in vec2 p, in vec2 p0, in vec2 p1, in vec2 p2 )
|
|
{
|
|
vec2 e0 = p1-p0, e1 = p2-p1, e2 = p0-p2;
|
|
vec2 v0 = p -p0, v1 = p -p1, v2 = p -p2;
|
|
vec2 pq0 = v0 - e0*clamp( dot(v0,e0)/dot(e0,e0), 0.0, 1.0 );
|
|
vec2 pq1 = v1 - e1*clamp( dot(v1,e1)/dot(e1,e1), 0.0, 1.0 );
|
|
vec2 pq2 = v2 - e2*clamp( dot(v2,e2)/dot(e2,e2), 0.0, 1.0 );
|
|
float s = sign( e0.x*e2.y - e0.y*e2.x );
|
|
vec2 d = min(min(vec2(dot(pq0,pq0), s*(v0.x*e0.y-v0.y*e0.x)),
|
|
vec2(dot(pq1,pq1), s*(v1.x*e1.y-v1.y*e1.x))),
|
|
vec2(dot(pq2,pq2), s*(v2.x*e2.y-v2.y*e2.x)));
|
|
return -sqrt(d.x)*sign(d.y);
|
|
}
|
|
|
|
float sdUnevenCapsule( vec2 p, float r1, float r2, float h )
|
|
{
|
|
p.x = abs(p.x);
|
|
float b = (r1-r2)/h;
|
|
float a = sqrt(1.0-b*b);
|
|
float k = dot(p,vec2(-b,a));
|
|
if( k < 0.0 ) return length(p) - r1;
|
|
if( k > a*h ) return length(p-vec2(0.0,h)) - r2;
|
|
return dot(p, vec2(a,b) ) - r1;
|
|
}
|
|
|
|
float sdPentagon( in vec2 p, in float r )
|
|
{
|
|
const vec3 k = vec3(0.809016994,0.587785252,0.726542528);
|
|
p.x = abs(p.x);
|
|
p -= 2.0*min(dot(vec2(-k.x,k.y),p),0.0)*vec2(-k.x,k.y);
|
|
p -= 2.0*min(dot(vec2( k.x,k.y),p),0.0)*vec2( k.x,k.y);
|
|
p -= vec2(clamp(p.x,-r*k.z,r*k.z),r);
|
|
return length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdHexagon( in vec2 p, in float r )
|
|
{
|
|
const vec3 k = vec3(-0.866025404,0.5,0.577350269);
|
|
p = abs(p);
|
|
p -= 2.0*min(dot(k.xy,p),0.0)*k.xy;
|
|
p -= vec2(clamp(p.x, -k.z*r, k.z*r), r);
|
|
return length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdOctogon( in vec2 p, in float r )
|
|
{
|
|
const vec3 k = vec3(-0.9238795325, 0.3826834323, 0.4142135623 );
|
|
p = abs(p);
|
|
p -= 2.0*min(dot(vec2( k.x,k.y),p),0.0)*vec2( k.x,k.y);
|
|
p -= 2.0*min(dot(vec2(-k.x,k.y),p),0.0)*vec2(-k.x,k.y);
|
|
p -= vec2(clamp(p.x, -k.z*r, k.z*r), r);
|
|
return length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdHexagram( in vec2 p, in float r )
|
|
{
|
|
const vec4 k = vec4(-0.5,0.8660254038,0.5773502692,1.7320508076);
|
|
p = abs(p);
|
|
p -= 2.0*min(dot(k.xy,p),0.0)*k.xy;
|
|
p -= 2.0*min(dot(k.yx,p),0.0)*k.yx;
|
|
p -= vec2(clamp(p.x,r*k.z,r*k.w),r);
|
|
return length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdStar5(in vec2 p, in float r, in float rf)
|
|
{
|
|
const vec2 k1 = vec2(0.809016994375, -0.587785252292);
|
|
const vec2 k2 = vec2(-k1.x,k1.y);
|
|
p.x = abs(p.x);
|
|
p -= 2.0*max(dot(k1,p),0.0)*k1;
|
|
p -= 2.0*max(dot(k2,p),0.0)*k2;
|
|
p.x = abs(p.x);
|
|
p.y -= r;
|
|
vec2 ba = rf*vec2(-k1.y,k1.x) - vec2(0,1);
|
|
float h = clamp( dot(p,ba)/dot(ba,ba), 0.0, r );
|
|
return length(p-ba*h) * sign(p.y*ba.x-p.x*ba.y);
|
|
}
|
|
|
|
float sdStar( in vec2 p, in float r, in int n, in float m)
|
|
{
|
|
// next 4 lines can be precomputed for a given shape
|
|
float an = 3.141593/float(n);
|
|
float en = 3.141593/m; // m is between 2 and n
|
|
vec2 acs = vec2(cos(an),sin(an));
|
|
vec2 ecs = vec2(cos(en),sin(en)); // ecs=vec2(0,1) for regular polygon
|
|
|
|
float bn = mod(atan(p.x,p.y),2.0*an) - an;
|
|
p = length(p)*vec2(cos(bn),abs(sin(bn)));
|
|
p -= r*acs;
|
|
p += ecs*clamp( -dot(p,ecs), 0.0, r*acs.y/ecs.y);
|
|
return length(p)*sign(p.x);
|
|
}
|
|
|
|
float sdPie( in vec2 p, in vec2 c, in float r )
|
|
{
|
|
p.x = abs(p.x);
|
|
float l = length(p) - r;
|
|
float m = length(p-c*clamp(dot(p,c),0.0,r)); // c=sin/cos of aperture
|
|
return max(l,m*sign(c.y*p.x-c.x*p.y));
|
|
}
|
|
|
|
float sdCutDisk( in vec2 p, in float r, in float h )
|
|
{
|
|
float w = sqrt(r*r-h*h); // constant for any given shape
|
|
p.x = abs(p.x);
|
|
float s = max( (h-r)*p.x*p.x+w*w*(h+r-2.0*p.y), h*p.x-w*p.y );
|
|
return (s<0.0) ? length(p)-r :
|
|
(p.x<w) ? h - p.y :
|
|
length(p-vec2(w,h));
|
|
}
|
|
|
|
float sdArc( in vec2 p, in vec2 sc, in float ra, float rb )
|
|
{
|
|
// sc is the sin/cos of the arc's aperture
|
|
p.x = abs(p.x);
|
|
return ((sc.y*p.x>sc.x*p.y) ? length(p-sc*ra) :
|
|
abs(length(p)-ra)) - rb;
|
|
}
|
|
|
|
float sdRing( in vec2 p, in vec2 n, in float r, float th )
|
|
{
|
|
p.x = abs(p.x);
|
|
|
|
p = mat2x2(n.x,n.y,-n.y,n.x)*p;
|
|
|
|
return max( abs(length(p)-r)-th*0.5,
|
|
length(vec2(p.x,max(0.0,abs(r-p.y)-th*0.5)))*sign(p.x) );
|
|
}
|
|
|
|
float sdHorseshoe( in vec2 p, in vec2 c, in float r, in vec2 w )
|
|
{
|
|
p.x = abs(p.x);
|
|
float l = length(p);
|
|
p = mat2(-c.x, c.y, c.y, c.x)*p;
|
|
p = vec2((p.y>0.0 || p.x>0.0)?p.x:l*sign(-c.x),
|
|
(p.x>0.0)?p.y:l );
|
|
p = vec2(p.x,abs(p.y-r))-w;
|
|
return length(max(p,0.0)) + min(0.0,max(p.x,p.y));
|
|
}
|
|
|
|
float sdVesica(vec2 p, float r, float d)
|
|
{
|
|
p = abs(p);
|
|
float b = sqrt(r*r-d*d);
|
|
return ((p.y-b)*d>p.x*b) ? length(p-vec2(0.0,b))
|
|
: length(p-vec2(-d,0.0))-r;
|
|
}
|
|
|
|
float sdOrientedVesica( vec2 p, vec2 a, vec2 b, float w )
|
|
{
|
|
float r = 0.5*length(b-a);
|
|
float d = 0.5*(r*r-w*w)/w;
|
|
vec2 v = (b-a)/r;
|
|
vec2 c = (b+a)*0.5;
|
|
vec2 q = 0.5*abs(mat2(v.y,v.x,-v.x,v.y)*(p-c));
|
|
vec3 h = (r*q.x<d*(q.y-r)) ? vec3(0.0,r,0.0) : vec3(-d,0.0,d+w);
|
|
return length( q-h.xy) - h.z;
|
|
}
|
|
|
|
float sdMoon(vec2 p, float d, float ra, float rb )
|
|
{
|
|
p.y = abs(p.y);
|
|
float a = (ra*ra - rb*rb + d*d)/(2.0*d);
|
|
float b = sqrt(max(ra*ra-a*a,0.0));
|
|
if( d*(p.x*b-p.y*a) > d*d*max(b-p.y,0.0) )
|
|
return length(p-vec2(a,b));
|
|
return max( (length(p )-ra),
|
|
-(length(p-vec2(d,0))-rb));
|
|
}
|
|
|
|
float sdRoundedCross( in vec2 p, in float h )
|
|
{
|
|
float k = 0.5*(h+1.0/h);
|
|
p = abs(p);
|
|
return ( p.x<1.0 && p.y<p.x*(k-h)+h ) ?
|
|
k-sqrt(dot2(p-vec2(1,k))) :
|
|
sqrt(min(dot2(p-vec2(0,h)),
|
|
dot2(p-vec2(1,0))));
|
|
}
|
|
|
|
float sdEgg( in vec2 p, in float ra, in float rb )
|
|
{
|
|
const float k = sqrt(3.0);
|
|
p.x = abs(p.x);
|
|
float r = ra - rb;
|
|
return ((p.y<0.0) ? length(vec2(p.x, p.y )) - r :
|
|
(k*(p.x+r)<p.y) ? length(vec2(p.x, p.y-k*r)) :
|
|
length(vec2(p.x+r,p.y )) - 2.0*r) - rb;
|
|
}
|
|
|
|
float sdHeart( in vec2 p )
|
|
{
|
|
p.x = abs(p.x);
|
|
|
|
if( p.y+p.x>1.0 )
|
|
return sqrt(dot2(p-vec2(0.25,0.75))) - sqrt(2.0)/4.0;
|
|
return sqrt(min(dot2(p-vec2(0.00,1.00)),
|
|
dot2(p-0.5*max(p.x+p.y,0.0)))) * sign(p.x-p.y);
|
|
}
|
|
|
|
float sdCross( in vec2 p, in vec2 b, float r )
|
|
{
|
|
p = abs(p); p = (p.y>p.x) ? p.yx : p.xy;
|
|
vec2 q = p - b;
|
|
float k = max(q.y,q.x);
|
|
vec2 w = (k>0.0) ? q : vec2(b.y-p.x,-k);
|
|
return sign(k)*length(max(w,0.0)) + r;
|
|
}
|
|
|
|
float sdRoundedX( in vec2 p, in float w, in float r )
|
|
{
|
|
p = abs(p);
|
|
return length(p-min(p.x+p.y,w)*0.5) - r;
|
|
}
|
|
|
|
float sdPolygon( in vec2[N] v, in vec2 p )
|
|
{
|
|
float d = dot(p-v[0],p-v[0]);
|
|
float s = 1.0;
|
|
for( int i=0, j=N-1; i<N; j=i, i++ )
|
|
{
|
|
vec2 e = v[j] - v[i];
|
|
vec2 w = p - v[i];
|
|
vec2 b = w - e*clamp( dot(w,e)/dot(e,e), 0.0, 1.0 );
|
|
d = min( d, dot(b,b) );
|
|
bvec3 c = bvec3(p.y>=v[i].y,p.y<v[j].y,e.x*w.y>e.y*w.x);
|
|
if( all(c) || all(not(c)) ) s*=-1.0;
|
|
}
|
|
return s*sqrt(d);
|
|
}
|
|
|
|
float sdEllipse( in vec2 p, in vec2 ab )
|
|
{
|
|
p = abs(p); if( p.x > p.y ) {p=p.yx;ab=ab.yx;}
|
|
float l = ab.y*ab.y - ab.x*ab.x;
|
|
float m = ab.x*p.x/l; float m2 = m*m;
|
|
float n = ab.y*p.y/l; float n2 = n*n;
|
|
float c = (m2+n2-1.0)/3.0; float c3 = c*c*c;
|
|
float q = c3 + m2*n2*2.0;
|
|
float d = c3 + m2*n2;
|
|
float g = m + m*n2;
|
|
float co;
|
|
if( d<0.0 )
|
|
{
|
|
float h = acos(q/c3)/3.0;
|
|
float s = cos(h);
|
|
float t = sin(h)*sqrt(3.0);
|
|
float rx = sqrt( -c*(s + t + 2.0) + m2 );
|
|
float ry = sqrt( -c*(s - t + 2.0) + m2 );
|
|
co = (ry+sign(l)*rx+abs(g)/(rx*ry)- m)/2.0;
|
|
}
|
|
else
|
|
{
|
|
float h = 2.0*m*n*sqrt( d );
|
|
float s = sign(q+h)*pow(abs(q+h), 1.0/3.0);
|
|
float u = sign(q-h)*pow(abs(q-h), 1.0/3.0);
|
|
float rx = -s - u - c*4.0 + 2.0*m2;
|
|
float ry = (s - u)*sqrt(3.0);
|
|
float rm = sqrt( rx*rx + ry*ry );
|
|
co = (ry/sqrt(rm-rx)+2.0*g/rm-m)/2.0;
|
|
}
|
|
vec2 r = ab * vec2(co, sqrt(1.0-co*co));
|
|
return length(r-p) * sign(p.y-r.y);
|
|
}
|
|
|
|
float sdParabola( in vec2 pos, in float k )
|
|
{
|
|
pos.x = abs(pos.x);
|
|
float ik = 1.0/k;
|
|
float p = ik*(pos.y - 0.5*ik)/3.0;
|
|
float q = 0.25*ik*ik*pos.x;
|
|
float h = q*q - p*p*p;
|
|
float r = sqrt(abs(h));
|
|
float x = (h>0.0) ?
|
|
pow(q+r,1.0/3.0) - pow(abs(q-r),1.0/3.0)*sign(r-q) :
|
|
2.0*cos(atan(r,q)/3.0)*sqrt(p);
|
|
return length(pos-vec2(x,k*x*x)) * sign(pos.x-x);
|
|
}
|
|
|
|
float sdParabola( in vec2 pos, in float wi, in float he )
|
|
{
|
|
pos.x = abs(pos.x);
|
|
float ik = wi*wi/he;
|
|
float p = ik*(he-pos.y-0.5*ik)/3.0;
|
|
float q = pos.x*ik*ik*0.25;
|
|
float h = q*q - p*p*p;
|
|
float r = sqrt(abs(h));
|
|
float x = (h>0.0) ?
|
|
pow(q+r,1.0/3.0) - pow(abs(q-r),1.0/3.0)*sign(r-q) :
|
|
2.0*cos(atan(r/q)/3.0)*sqrt(p);
|
|
x = min(x,wi);
|
|
return length(pos-vec2(x,he-x*x/ik)) *
|
|
sign(ik*(pos.y-he)+pos.x*pos.x);
|
|
}
|
|
|
|
float sdBezier( in vec2 pos, in vec2 A, in vec2 B, in vec2 C )
|
|
{
|
|
vec2 a = B - A;
|
|
vec2 b = A - 2.0*B + C;
|
|
vec2 c = a * 2.0;
|
|
vec2 d = A - pos;
|
|
float kk = 1.0/dot(b,b);
|
|
float kx = kk * dot(a,b);
|
|
float ky = kk * (2.0*dot(a,a)+dot(d,b)) / 3.0;
|
|
float kz = kk * dot(d,a);
|
|
float res = 0.0;
|
|
float p = ky - kx*kx;
|
|
float p3 = p*p*p;
|
|
float q = kx*(2.0*kx*kx-3.0*ky) + kz;
|
|
float h = q*q + 4.0*p3;
|
|
if( h >= 0.0)
|
|
{
|
|
h = sqrt(h);
|
|
vec2 x = (vec2(h,-h)-q)/2.0;
|
|
vec2 uv = sign(x)*pow(abs(x), vec2(1.0/3.0));
|
|
float t = clamp( uv.x+uv.y-kx, 0.0, 1.0 );
|
|
res = dot2(d + (c + b*t)*t);
|
|
}
|
|
else
|
|
{
|
|
float z = sqrt(-p);
|
|
float v = acos( q/(p*z*2.0) ) / 3.0;
|
|
float m = cos(v);
|
|
float n = sin(v)*1.732050808;
|
|
vec3 t = clamp(vec3(m+m,-n-m,n-m)*z-kx,0.0,1.0);
|
|
res = min( dot2(d+(c+b*t.x)*t.x),
|
|
dot2(d+(c+b*t.y)*t.y) );
|
|
// the third root cannot be the closest
|
|
// res = min(res,dot2(d+(c+b*t.z)*t.z));
|
|
}
|
|
return sqrt( res );
|
|
}
|
|
|
|
float sdBlobbyCross( in vec2 pos, float he )
|
|
{
|
|
pos = abs(pos);
|
|
pos = vec2(abs(pos.x-pos.y),1.0-pos.x-pos.y)/sqrt(2.0);
|
|
|
|
float p = (he-pos.y-0.25/he)/(6.0*he);
|
|
float q = pos.x/(he*he*16.0);
|
|
float h = q*q - p*p*p;
|
|
|
|
float x;
|
|
if( h>0.0 ) { float r = sqrt(h); x = pow(q+r,1.0/3.0)-pow(abs(q-r),1.0/3.0)*sign(r-q); }
|
|
else { float r = sqrt(p); x = 2.0*r*cos(acos(q/(p*r))/3.0); }
|
|
x = min(x,sqrt(2.0)/2.0);
|
|
|
|
vec2 z = vec2(x,he*(1.0-2.0*x*x)) - pos;
|
|
return length(z) * sign(z.y);
|
|
}
|
|
|
|
float sdTunnel( in vec2 p, in vec2 wh )
|
|
{
|
|
p.x = abs(p.x); p.y = -p.y;
|
|
vec2 q = p - wh;
|
|
|
|
float d1 = dot2(vec2(max(q.x,0.0),q.y));
|
|
q.x = (p.y>0.0) ? q.x : length(p)-wh.x;
|
|
float d2 = dot2(vec2(q.x,max(q.y,0.0)));
|
|
float d = sqrt( min(d1,d2) );
|
|
|
|
return (max(q.x,q.y)<0.0) ? -d : d;
|
|
}
|
|
|
|
float sdStairs( in vec2 p, in vec2 wh, in float n )
|
|
{
|
|
vec2 ba = wh*n;
|
|
float d = min(dot2(p-vec2(clamp(p.x,0.0,ba.x),0.0)),
|
|
dot2(p-vec2(ba.x,clamp(p.y,0.0,ba.y))) );
|
|
float s = sign(max(-p.y,p.x-ba.x) );
|
|
|
|
float dia = length(wh);
|
|
p = mat2(wh.x,-wh.y, wh.y,wh.x)*p/dia;
|
|
float id = clamp(round(p.x/dia),0.0,n-1.0);
|
|
p.x = p.x - id*dia;
|
|
p = mat2(wh.x, wh.y,-wh.y,wh.x)*p/dia;
|
|
|
|
float hh = wh.y/2.0;
|
|
p.y -= hh;
|
|
if( p.y>hh*sign(p.x) ) s=1.0;
|
|
p = (id<0.5 || p.x>0.0) ? p : -p;
|
|
d = min( d, dot2(p-vec2(0.0,clamp(p.y,-hh,hh))) );
|
|
d = min( d, dot2(p-vec2(clamp(p.x,0.0,wh.x),hh)) );
|
|
|
|
return sqrt(d)*s;
|
|
}
|
|
|
|
float sdQuadraticCircle( in vec2 p )
|
|
{
|
|
p = abs(p); if( p.y>p.x ) p=p.yx;
|
|
|
|
float a = p.x-p.y;
|
|
float b = p.x+p.y;
|
|
float c = (2.0*b-1.0)/3.0;
|
|
float h = a*a + c*c*c;
|
|
float t;
|
|
if( h>=0.0 )
|
|
{
|
|
h = sqrt(h);
|
|
t = sign(h-a)*pow(abs(h-a),1.0/3.0) - pow(h+a,1.0/3.0);
|
|
}
|
|
else
|
|
{
|
|
float z = sqrt(-c);
|
|
float v = acos(a/(c*z))/3.0;
|
|
t = -z*(cos(v)+sin(v)*1.732050808);
|
|
}
|
|
t *= 0.5;
|
|
vec2 w = vec2(-t,t) + 0.75 - t*t - p;
|
|
return length(w) * sign( a*a*0.5+b-1.5 );
|
|
}
|
|
|
|
float sdHyberbola( in vec2 p, in float k, in float he ) // k in (0,inf)
|
|
{
|
|
p = abs(p);
|
|
p = vec2(p.x-p.y,p.x+p.y)/sqrt(2.0);
|
|
|
|
float x2 = p.x*p.x/16.0;
|
|
float y2 = p.y*p.y/16.0;
|
|
float r = k*(4.0*k - p.x*p.y)/12.0;
|
|
float q = (x2 - y2)*k*k;
|
|
float h = q*q + r*r*r;
|
|
float u;
|
|
if( h<0.0 )
|
|
{
|
|
float m = sqrt(-r);
|
|
u = m*cos( acos(q/(r*m))/3.0 );
|
|
}
|
|
else
|
|
{
|
|
float m = pow(sqrt(h)-q,1.0/3.0);
|
|
u = (m - r/m)/2.0;
|
|
}
|
|
float w = sqrt( u + x2 );
|
|
float b = k*p.y - x2*p.x*2.0;
|
|
float t = p.x/4.0 - w + sqrt( 2.0*x2 - u + b/w/4.0 );
|
|
t = max(t,sqrt(he*he*0.5+k)-he/sqrt(2.0));
|
|
float d = length( p-vec2(t,k/t) );
|
|
return p.x*p.y < k ? d : -d;
|
|
}
|
|
|
|
float sdfCoolS( in vec2 p )
|
|
{
|
|
float six = (p.y<0.0) ? -p.x : p.x;
|
|
p.x = abs(p.x);
|
|
p.y = abs(p.y) - 0.2;
|
|
float rex = p.x - min(round(p.x/0.4),0.4);
|
|
float aby = abs(p.y-0.2)-0.6;
|
|
|
|
float d = dot2(vec2(six,-p.y)-clamp(0.5*(six-p.y),0.0,0.2));
|
|
d = min(d,dot2(vec2(p.x,-aby)-clamp(0.5*(p.x-aby),0.0,0.4)));
|
|
d = min(d,dot2(vec2(rex,p.y -clamp(p.y ,0.0,0.4))));
|
|
|
|
float s = 2.0*p.x + aby + abs(aby+0.4) - 0.4;
|
|
return sqrt(d) * sign(s);
|
|
}
|
|
|
|
float sdCircleWave( in vec2 p, in float tb, in float ra )
|
|
{
|
|
tb = 3.1415927*5.0/6.0*max(tb,0.0001);
|
|
vec2 co = ra*vec2(sin(tb),cos(tb));
|
|
p.x = abs(mod(p.x,co.x*4.0)-co.x*2.0);
|
|
vec2 p1 = p;
|
|
vec2 p2 = vec2(abs(p.x-2.0*co.x),-p.y+2.0*co.y);
|
|
float d1 = ((co.y*p1.x>co.x*p1.y) ? length(p1-co) : abs(length(p1)-ra));
|
|
float d2 = ((co.y*p2.x>co.x*p2.y) ? length(p2-co) : abs(length(p2)-ra));
|
|
return min(d1, d2);
|
|
} |