float dot2(vec2 p) { return dot(p, p); } float sdCircle( vec2 p, float r ) { return length(p) - r; } float sdRoundedBox( in vec2 p, in vec2 b, in vec4 r ) { r.xy = (p.x>0.0)?r.xy : r.zw; r.x = (p.y>0.0)?r.x : r.y; vec2 q = abs(p)-b+r.x; return min(max(q.x,q.y),0.0) + length(max(q,0.0)) - r.x; } float sdBox( in vec2 p, in vec2 b ) { vec2 d = abs(p)-b; return length(max(d,0.0)) + min(max(d.x,d.y),0.0); } float sdOrientedBox( in vec2 p, in vec2 a, in vec2 b, float th ) { float l = length(b-a); vec2 d = (b-a)/l; vec2 q = (p-(a+b)*0.5); q = mat2(d.x,-d.y,d.y,d.x)*q; q = abs(q)-vec2(l,th)*0.5; return length(max(q,0.0)) + min(max(q.x,q.y),0.0); } float sdSegment( in vec2 p, in vec2 a, in vec2 b ) { vec2 pa = p-a, ba = b-a; float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 ); return length( pa - ba*h ); } float ndot(vec2 a, vec2 b ) { return a.x*b.x - a.y*b.y; } float sdRhombus( in vec2 p, in vec2 b ) { p = abs(p); float h = clamp( ndot(b-2.0*p,b)/dot(b,b), -1.0, 1.0 ); float d = length( p-0.5*b*vec2(1.0-h,1.0+h) ); return d * sign( p.x*b.y + p.y*b.x - b.x*b.y ); } float sdTrapezoid( in vec2 p, in float r1, float r2, float he ) { vec2 k1 = vec2(r2,he); vec2 k2 = vec2(r2-r1,2.0*he); p.x = abs(p.x); vec2 ca = vec2(p.x-min(p.x,(p.y<0.0)?r1:r2), abs(p.y)-he); vec2 cb = p - k1 + k2*clamp( dot(k1-p,k2)/dot2(k2), 0.0, 1.0 ); float s = (cb.x<0.0 && ca.y<0.0) ? -1.0 : 1.0; return s*sqrt( min(dot2(ca),dot2(cb)) ); } float sdParallelogram( in vec2 p, float wi, float he, float sk ) { vec2 e = vec2(sk,he); p = (p.y<0.0)?-p:p; vec2 w = p - e; w.x -= clamp(w.x,-wi,wi); vec2 d = vec2(dot(w,w), -w.y); float s = p.x*e.y - p.y*e.x; p = (s<0.0)?-p:p; vec2 v = p - vec2(wi,0); v -= e*clamp(dot(v,e)/dot(e,e),-1.0,1.0); d = min( d, vec2(dot(v,v), wi*he-abs(s))); return sqrt(d.x)*sign(-d.y); } float sdEquilateralTriangle( in vec2 p, in float r ) { const float k = sqrt(3.0); p.x = abs(p.x) - r; p.y = p.y + r/k; if( p.x+k*p.y>0.0 ) p = vec2(p.x-k*p.y,-k*p.x-p.y)/2.0; p.x -= clamp( p.x, -2.0*r, 0.0 ); return -length(p)*sign(p.y); } float sdTriangleIsosceles( in vec2 p, in vec2 q ) { p.x = abs(p.x); vec2 a = p - q*clamp( dot(p,q)/dot(q,q), 0.0, 1.0 ); vec2 b = p - q*vec2( clamp( p.x/q.x, 0.0, 1.0 ), 1.0 ); float s = -sign( q.y ); vec2 d = min( vec2( dot(a,a), s*(p.x*q.y-p.y*q.x) ), vec2( dot(b,b), s*(p.y-q.y) )); return -sqrt(d.x)*sign(d.y); } float sdTriangle( in vec2 p, in vec2 p0, in vec2 p1, in vec2 p2 ) { vec2 e0 = p1-p0, e1 = p2-p1, e2 = p0-p2; vec2 v0 = p -p0, v1 = p -p1, v2 = p -p2; vec2 pq0 = v0 - e0*clamp( dot(v0,e0)/dot(e0,e0), 0.0, 1.0 ); vec2 pq1 = v1 - e1*clamp( dot(v1,e1)/dot(e1,e1), 0.0, 1.0 ); vec2 pq2 = v2 - e2*clamp( dot(v2,e2)/dot(e2,e2), 0.0, 1.0 ); float s = sign( e0.x*e2.y - e0.y*e2.x ); vec2 d = min(min(vec2(dot(pq0,pq0), s*(v0.x*e0.y-v0.y*e0.x)), vec2(dot(pq1,pq1), s*(v1.x*e1.y-v1.y*e1.x))), vec2(dot(pq2,pq2), s*(v2.x*e2.y-v2.y*e2.x))); return -sqrt(d.x)*sign(d.y); } float sdUnevenCapsule( vec2 p, float r1, float r2, float h ) { p.x = abs(p.x); float b = (r1-r2)/h; float a = sqrt(1.0-b*b); float k = dot(p,vec2(-b,a)); if( k < 0.0 ) return length(p) - r1; if( k > a*h ) return length(p-vec2(0.0,h)) - r2; return dot(p, vec2(a,b) ) - r1; } float sdPentagon( in vec2 p, in float r ) { const vec3 k = vec3(0.809016994,0.587785252,0.726542528); p.x = abs(p.x); p -= 2.0*min(dot(vec2(-k.x,k.y),p),0.0)*vec2(-k.x,k.y); p -= 2.0*min(dot(vec2( k.x,k.y),p),0.0)*vec2( k.x,k.y); p -= vec2(clamp(p.x,-r*k.z,r*k.z),r); return length(p)*sign(p.y); } float sdHexagon( in vec2 p, in float r ) { const vec3 k = vec3(-0.866025404,0.5,0.577350269); p = abs(p); p -= 2.0*min(dot(k.xy,p),0.0)*k.xy; p -= vec2(clamp(p.x, -k.z*r, k.z*r), r); return length(p)*sign(p.y); } float sdOctogon( in vec2 p, in float r ) { const vec3 k = vec3(-0.9238795325, 0.3826834323, 0.4142135623 ); p = abs(p); p -= 2.0*min(dot(vec2( k.x,k.y),p),0.0)*vec2( k.x,k.y); p -= 2.0*min(dot(vec2(-k.x,k.y),p),0.0)*vec2(-k.x,k.y); p -= vec2(clamp(p.x, -k.z*r, k.z*r), r); return length(p)*sign(p.y); } float sdHexagram( in vec2 p, in float r ) { const vec4 k = vec4(-0.5,0.8660254038,0.5773502692,1.7320508076); p = abs(p); p -= 2.0*min(dot(k.xy,p),0.0)*k.xy; p -= 2.0*min(dot(k.yx,p),0.0)*k.yx; p -= vec2(clamp(p.x,r*k.z,r*k.w),r); return length(p)*sign(p.y); } float sdStar5(in vec2 p, in float r, in float rf) { const vec2 k1 = vec2(0.809016994375, -0.587785252292); const vec2 k2 = vec2(-k1.x,k1.y); p.x = abs(p.x); p -= 2.0*max(dot(k1,p),0.0)*k1; p -= 2.0*max(dot(k2,p),0.0)*k2; p.x = abs(p.x); p.y -= r; vec2 ba = rf*vec2(-k1.y,k1.x) - vec2(0,1); float h = clamp( dot(p,ba)/dot(ba,ba), 0.0, r ); return length(p-ba*h) * sign(p.y*ba.x-p.x*ba.y); } float sdStar( in vec2 p, in float r, in int n, in float m) { // next 4 lines can be precomputed for a given shape float an = 3.141593/float(n); float en = 3.141593/m; // m is between 2 and n vec2 acs = vec2(cos(an),sin(an)); vec2 ecs = vec2(cos(en),sin(en)); // ecs=vec2(0,1) for regular polygon float bn = mod(atan(p.x,p.y),2.0*an) - an; p = length(p)*vec2(cos(bn),abs(sin(bn))); p -= r*acs; p += ecs*clamp( -dot(p,ecs), 0.0, r*acs.y/ecs.y); return length(p)*sign(p.x); } float sdPie( in vec2 p, in vec2 c, in float r ) { p.x = abs(p.x); float l = length(p) - r; float m = length(p-c*clamp(dot(p,c),0.0,r)); // c=sin/cos of aperture return max(l,m*sign(c.y*p.x-c.x*p.y)); } float sdCutDisk( in vec2 p, in float r, in float h ) { float w = sqrt(r*r-h*h); // constant for any given shape p.x = abs(p.x); float s = max( (h-r)*p.x*p.x+w*w*(h+r-2.0*p.y), h*p.x-w*p.y ); return (s<0.0) ? length(p)-r : (p.xsc.x*p.y) ? length(p-sc*ra) : abs(length(p)-ra)) - rb; } float sdRing( in vec2 p, in vec2 n, in float r, float th ) { p.x = abs(p.x); p = mat2x2(n.x,n.y,-n.y,n.x)*p; return max( abs(length(p)-r)-th*0.5, length(vec2(p.x,max(0.0,abs(r-p.y)-th*0.5)))*sign(p.x) ); } float sdHorseshoe( in vec2 p, in vec2 c, in float r, in vec2 w ) { p.x = abs(p.x); float l = length(p); p = mat2(-c.x, c.y, c.y, c.x)*p; p = vec2((p.y>0.0 || p.x>0.0)?p.x:l*sign(-c.x), (p.x>0.0)?p.y:l ); p = vec2(p.x,abs(p.y-r))-w; return length(max(p,0.0)) + min(0.0,max(p.x,p.y)); } float sdVesica(vec2 p, float r, float d) { p = abs(p); float b = sqrt(r*r-d*d); return ((p.y-b)*d>p.x*b) ? length(p-vec2(0.0,b)) : length(p-vec2(-d,0.0))-r; } float sdOrientedVesica( vec2 p, vec2 a, vec2 b, float w ) { float r = 0.5*length(b-a); float d = 0.5*(r*r-w*w)/w; vec2 v = (b-a)/r; vec2 c = (b+a)*0.5; vec2 q = 0.5*abs(mat2(v.y,v.x,-v.x,v.y)*(p-c)); vec3 h = (r*q.x d*d*max(b-p.y,0.0) ) return length(p-vec2(a,b)); return max( (length(p )-ra), -(length(p-vec2(d,0))-rb)); } float sdRoundedCross( in vec2 p, in float h ) { float k = 0.5*(h+1.0/h); p = abs(p); return ( p.x<1.0 && p.y1.0 ) return sqrt(dot2(p-vec2(0.25,0.75))) - sqrt(2.0)/4.0; return sqrt(min(dot2(p-vec2(0.00,1.00)), dot2(p-0.5*max(p.x+p.y,0.0)))) * sign(p.x-p.y); } float sdCross( in vec2 p, in vec2 b, float r ) { p = abs(p); p = (p.y>p.x) ? p.yx : p.xy; vec2 q = p - b; float k = max(q.y,q.x); vec2 w = (k>0.0) ? q : vec2(b.y-p.x,-k); return sign(k)*length(max(w,0.0)) + r; } float sdRoundedX( in vec2 p, in float w, in float r ) { p = abs(p); return length(p-min(p.x+p.y,w)*0.5) - r; } float sdPolygon( in vec2[N] v, in vec2 p ) { float d = dot(p-v[0],p-v[0]); float s = 1.0; for( int i=0, j=N-1; i=v[i].y,p.ye.y*w.x); if( all(c) || all(not(c)) ) s*=-1.0; } return s*sqrt(d); } float sdEllipse( in vec2 p, in vec2 ab ) { p = abs(p); if( p.x > p.y ) {p=p.yx;ab=ab.yx;} float l = ab.y*ab.y - ab.x*ab.x; float m = ab.x*p.x/l; float m2 = m*m; float n = ab.y*p.y/l; float n2 = n*n; float c = (m2+n2-1.0)/3.0; float c3 = c*c*c; float q = c3 + m2*n2*2.0; float d = c3 + m2*n2; float g = m + m*n2; float co; if( d<0.0 ) { float h = acos(q/c3)/3.0; float s = cos(h); float t = sin(h)*sqrt(3.0); float rx = sqrt( -c*(s + t + 2.0) + m2 ); float ry = sqrt( -c*(s - t + 2.0) + m2 ); co = (ry+sign(l)*rx+abs(g)/(rx*ry)- m)/2.0; } else { float h = 2.0*m*n*sqrt( d ); float s = sign(q+h)*pow(abs(q+h), 1.0/3.0); float u = sign(q-h)*pow(abs(q-h), 1.0/3.0); float rx = -s - u - c*4.0 + 2.0*m2; float ry = (s - u)*sqrt(3.0); float rm = sqrt( rx*rx + ry*ry ); co = (ry/sqrt(rm-rx)+2.0*g/rm-m)/2.0; } vec2 r = ab * vec2(co, sqrt(1.0-co*co)); return length(r-p) * sign(p.y-r.y); } float sdParabola( in vec2 pos, in float k ) { pos.x = abs(pos.x); float ik = 1.0/k; float p = ik*(pos.y - 0.5*ik)/3.0; float q = 0.25*ik*ik*pos.x; float h = q*q - p*p*p; float r = sqrt(abs(h)); float x = (h>0.0) ? pow(q+r,1.0/3.0) - pow(abs(q-r),1.0/3.0)*sign(r-q) : 2.0*cos(atan(r,q)/3.0)*sqrt(p); return length(pos-vec2(x,k*x*x)) * sign(pos.x-x); } float sdParabola( in vec2 pos, in float wi, in float he ) { pos.x = abs(pos.x); float ik = wi*wi/he; float p = ik*(he-pos.y-0.5*ik)/3.0; float q = pos.x*ik*ik*0.25; float h = q*q - p*p*p; float r = sqrt(abs(h)); float x = (h>0.0) ? pow(q+r,1.0/3.0) - pow(abs(q-r),1.0/3.0)*sign(r-q) : 2.0*cos(atan(r/q)/3.0)*sqrt(p); x = min(x,wi); return length(pos-vec2(x,he-x*x/ik)) * sign(ik*(pos.y-he)+pos.x*pos.x); } float sdBezier( in vec2 pos, in vec2 A, in vec2 B, in vec2 C ) { vec2 a = B - A; vec2 b = A - 2.0*B + C; vec2 c = a * 2.0; vec2 d = A - pos; float kk = 1.0/dot(b,b); float kx = kk * dot(a,b); float ky = kk * (2.0*dot(a,a)+dot(d,b)) / 3.0; float kz = kk * dot(d,a); float res = 0.0; float p = ky - kx*kx; float p3 = p*p*p; float q = kx*(2.0*kx*kx-3.0*ky) + kz; float h = q*q + 4.0*p3; if( h >= 0.0) { h = sqrt(h); vec2 x = (vec2(h,-h)-q)/2.0; vec2 uv = sign(x)*pow(abs(x), vec2(1.0/3.0)); float t = clamp( uv.x+uv.y-kx, 0.0, 1.0 ); res = dot2(d + (c + b*t)*t); } else { float z = sqrt(-p); float v = acos( q/(p*z*2.0) ) / 3.0; float m = cos(v); float n = sin(v)*1.732050808; vec3 t = clamp(vec3(m+m,-n-m,n-m)*z-kx,0.0,1.0); res = min( dot2(d+(c+b*t.x)*t.x), dot2(d+(c+b*t.y)*t.y) ); // the third root cannot be the closest // res = min(res,dot2(d+(c+b*t.z)*t.z)); } return sqrt( res ); } float sdBlobbyCross( in vec2 pos, float he ) { pos = abs(pos); pos = vec2(abs(pos.x-pos.y),1.0-pos.x-pos.y)/sqrt(2.0); float p = (he-pos.y-0.25/he)/(6.0*he); float q = pos.x/(he*he*16.0); float h = q*q - p*p*p; float x; if( h>0.0 ) { float r = sqrt(h); x = pow(q+r,1.0/3.0)-pow(abs(q-r),1.0/3.0)*sign(r-q); } else { float r = sqrt(p); x = 2.0*r*cos(acos(q/(p*r))/3.0); } x = min(x,sqrt(2.0)/2.0); vec2 z = vec2(x,he*(1.0-2.0*x*x)) - pos; return length(z) * sign(z.y); } float sdTunnel( in vec2 p, in vec2 wh ) { p.x = abs(p.x); p.y = -p.y; vec2 q = p - wh; float d1 = dot2(vec2(max(q.x,0.0),q.y)); q.x = (p.y>0.0) ? q.x : length(p)-wh.x; float d2 = dot2(vec2(q.x,max(q.y,0.0))); float d = sqrt( min(d1,d2) ); return (max(q.x,q.y)<0.0) ? -d : d; } float sdStairs( in vec2 p, in vec2 wh, in float n ) { vec2 ba = wh*n; float d = min(dot2(p-vec2(clamp(p.x,0.0,ba.x),0.0)), dot2(p-vec2(ba.x,clamp(p.y,0.0,ba.y))) ); float s = sign(max(-p.y,p.x-ba.x) ); float dia = length(wh); p = mat2(wh.x,-wh.y, wh.y,wh.x)*p/dia; float id = clamp(round(p.x/dia),0.0,n-1.0); p.x = p.x - id*dia; p = mat2(wh.x, wh.y,-wh.y,wh.x)*p/dia; float hh = wh.y/2.0; p.y -= hh; if( p.y>hh*sign(p.x) ) s=1.0; p = (id<0.5 || p.x>0.0) ? p : -p; d = min( d, dot2(p-vec2(0.0,clamp(p.y,-hh,hh))) ); d = min( d, dot2(p-vec2(clamp(p.x,0.0,wh.x),hh)) ); return sqrt(d)*s; } float sdQuadraticCircle( in vec2 p ) { p = abs(p); if( p.y>p.x ) p=p.yx; float a = p.x-p.y; float b = p.x+p.y; float c = (2.0*b-1.0)/3.0; float h = a*a + c*c*c; float t; if( h>=0.0 ) { h = sqrt(h); t = sign(h-a)*pow(abs(h-a),1.0/3.0) - pow(h+a,1.0/3.0); } else { float z = sqrt(-c); float v = acos(a/(c*z))/3.0; t = -z*(cos(v)+sin(v)*1.732050808); } t *= 0.5; vec2 w = vec2(-t,t) + 0.75 - t*t - p; return length(w) * sign( a*a*0.5+b-1.5 ); } float sdHyberbola( in vec2 p, in float k, in float he ) // k in (0,inf) { p = abs(p); p = vec2(p.x-p.y,p.x+p.y)/sqrt(2.0); float x2 = p.x*p.x/16.0; float y2 = p.y*p.y/16.0; float r = k*(4.0*k - p.x*p.y)/12.0; float q = (x2 - y2)*k*k; float h = q*q + r*r*r; float u; if( h<0.0 ) { float m = sqrt(-r); u = m*cos( acos(q/(r*m))/3.0 ); } else { float m = pow(sqrt(h)-q,1.0/3.0); u = (m - r/m)/2.0; } float w = sqrt( u + x2 ); float b = k*p.y - x2*p.x*2.0; float t = p.x/4.0 - w + sqrt( 2.0*x2 - u + b/w/4.0 ); t = max(t,sqrt(he*he*0.5+k)-he/sqrt(2.0)); float d = length( p-vec2(t,k/t) ); return p.x*p.y < k ? d : -d; } float sdfCoolS( in vec2 p ) { float six = (p.y<0.0) ? -p.x : p.x; p.x = abs(p.x); p.y = abs(p.y) - 0.2; float rex = p.x - min(round(p.x/0.4),0.4); float aby = abs(p.y-0.2)-0.6; float d = dot2(vec2(six,-p.y)-clamp(0.5*(six-p.y),0.0,0.2)); d = min(d,dot2(vec2(p.x,-aby)-clamp(0.5*(p.x-aby),0.0,0.4))); d = min(d,dot2(vec2(rex,p.y -clamp(p.y ,0.0,0.4)))); float s = 2.0*p.x + aby + abs(aby+0.4) - 0.4; return sqrt(d) * sign(s); } float sdCircleWave( in vec2 p, in float tb, in float ra ) { tb = 3.1415927*5.0/6.0*max(tb,0.0001); vec2 co = ra*vec2(sin(tb),cos(tb)); p.x = abs(mod(p.x,co.x*4.0)-co.x*2.0); vec2 p1 = p; vec2 p2 = vec2(abs(p.x-2.0*co.x),-p.y+2.0*co.y); float d1 = ((co.y*p1.x>co.x*p1.y) ? length(p1-co) : abs(length(p1)-ra)); float d2 = ((co.y*p2.x>co.x*p2.y) ? length(p2-co) : abs(length(p2)-ra)); return min(d1, d2); }