mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-14 15:01:07 +00:00
550 lines
15 KiB
C++
550 lines
15 KiB
C++
/******************************************************************************
|
|
* Spine Runtimes License Agreement
|
|
* Last updated January 1, 2020. Replaces all prior versions.
|
|
*
|
|
* Copyright (c) 2013-2020, Esoteric Software LLC
|
|
*
|
|
* Integration of the Spine Runtimes into software or otherwise creating
|
|
* derivative works of the Spine Runtimes is permitted under the terms and
|
|
* conditions of Section 2 of the Spine Editor License Agreement:
|
|
* http://esotericsoftware.com/spine-editor-license
|
|
*
|
|
* Otherwise, it is permitted to integrate the Spine Runtimes into software
|
|
* or otherwise create derivative works of the Spine Runtimes (collectively,
|
|
* "Products"), provided that each user of the Products must obtain their own
|
|
* Spine Editor license and redistribution of the Products in any form must
|
|
* include this license and copyright notice.
|
|
*
|
|
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
|
|
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#ifdef SPINE_UE4
|
|
#include "SpinePluginPrivatePCH.h"
|
|
#endif
|
|
|
|
#include <spine/PathConstraint.h>
|
|
|
|
#include <spine/PathConstraintData.h>
|
|
#include <spine/Skeleton.h>
|
|
#include <spine/PathAttachment.h>
|
|
#include <spine/Bone.h>
|
|
#include <spine/Slot.h>
|
|
|
|
#include <spine/SlotData.h>
|
|
#include <spine/BoneData.h>
|
|
|
|
using namespace spine;
|
|
|
|
RTTI_IMPL(PathConstraint, Updatable)
|
|
|
|
const float PathConstraint::EPSILON = 0.00001f;
|
|
const int PathConstraint::NONE = -1;
|
|
const int PathConstraint::BEFORE = -2;
|
|
const int PathConstraint::AFTER = -3;
|
|
|
|
PathConstraint::PathConstraint(PathConstraintData &data, Skeleton &skeleton) : Updatable(),
|
|
_data(data),
|
|
_target(skeleton.findSlot(
|
|
data.getTarget()->getName())),
|
|
_position(data.getPosition()),
|
|
_spacing(data.getSpacing()),
|
|
_rotateMix(data.getRotateMix()),
|
|
_translateMix(data.getTranslateMix()),
|
|
_active(false)
|
|
{
|
|
_bones.ensureCapacity(_data.getBones().size());
|
|
for (size_t i = 0; i < _data.getBones().size(); i++) {
|
|
BoneData *boneData = _data.getBones()[i];
|
|
_bones.add(skeleton.findBone(boneData->getName()));
|
|
}
|
|
|
|
_segments.setSize(10, 0);
|
|
}
|
|
|
|
void PathConstraint::apply() {
|
|
update();
|
|
}
|
|
|
|
void PathConstraint::update() {
|
|
Attachment *baseAttachment = _target->getAttachment();
|
|
if (baseAttachment == NULL || !baseAttachment->getRTTI().instanceOf(PathAttachment::rtti)) {
|
|
return;
|
|
}
|
|
|
|
PathAttachment *attachment = static_cast<PathAttachment *>(baseAttachment);
|
|
|
|
float rotateMix = _rotateMix;
|
|
float translateMix = _translateMix;
|
|
bool translate = translateMix > 0;
|
|
bool rotate = rotateMix > 0;
|
|
if (!translate && !rotate) {
|
|
return;
|
|
}
|
|
|
|
PathConstraintData &data = _data;
|
|
bool percentSpacing = data._spacingMode == SpacingMode_Percent;
|
|
RotateMode rotateMode = data._rotateMode;
|
|
bool tangents = rotateMode == RotateMode_Tangent, scale = rotateMode == RotateMode_ChainScale;
|
|
size_t boneCount = _bones.size();
|
|
size_t spacesCount = tangents ? boneCount : boneCount + 1;
|
|
_spaces.setSize(spacesCount, 0);
|
|
float spacing = _spacing;
|
|
if (scale || !percentSpacing) {
|
|
if (scale) _lengths.setSize(boneCount, 0);
|
|
bool lengthSpacing = data._spacingMode == SpacingMode_Length;
|
|
|
|
for (size_t i = 0, n = spacesCount - 1; i < n;) {
|
|
Bone *boneP = _bones[i];
|
|
Bone &bone = *boneP;
|
|
float setupLength = bone._data.getLength();
|
|
if (setupLength < PathConstraint::EPSILON) {
|
|
if (scale) _lengths[i] = 0;
|
|
_spaces[++i] = 0;
|
|
} else if (percentSpacing) {
|
|
if (scale) {
|
|
float x = setupLength * bone._a, y = setupLength * bone._c;
|
|
float length = MathUtil::sqrt(x * x + y * y);
|
|
_lengths[i] = length;
|
|
}
|
|
_spaces[++i] = spacing;
|
|
} else {
|
|
float x = setupLength * bone._a;
|
|
float y = setupLength * bone._c;
|
|
float length = MathUtil::sqrt(x * x + y * y);
|
|
if (scale) {
|
|
_lengths[i] = length;
|
|
}
|
|
|
|
_spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 1; i < spacesCount; ++i) {
|
|
_spaces[i] = spacing;
|
|
}
|
|
}
|
|
|
|
Vector<float>& positions = computeWorldPositions(*attachment, spacesCount, tangents,
|
|
data.getPositionMode() == PositionMode_Percent, percentSpacing);
|
|
float boneX = positions[0];
|
|
float boneY = positions[1];
|
|
float offsetRotation = data.getOffsetRotation();
|
|
bool tip;
|
|
if (offsetRotation == 0) {
|
|
tip = rotateMode == RotateMode_Chain;
|
|
} else {
|
|
tip = false;
|
|
Bone &p = _target->getBone();
|
|
offsetRotation *= p.getA() * p.getD() - p.getB() * p.getC() > 0 ? MathUtil::Deg_Rad : -MathUtil::Deg_Rad;
|
|
}
|
|
|
|
for (size_t i = 0, p = 3; i < boneCount; i++, p += 3) {
|
|
Bone *boneP = _bones[i];
|
|
Bone &bone = *boneP;
|
|
bone._worldX += (boneX - bone._worldX) * translateMix;
|
|
bone._worldY += (boneY - bone._worldY) * translateMix;
|
|
float x = positions[p];
|
|
float y = positions[p + 1];
|
|
float dx = x - boneX;
|
|
float dy = y - boneY;
|
|
if (scale) {
|
|
float length = _lengths[i];
|
|
if (length >= PathConstraint::EPSILON) {
|
|
float s = (MathUtil::sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1;
|
|
bone._a *= s;
|
|
bone._c *= s;
|
|
}
|
|
}
|
|
|
|
boneX = x;
|
|
boneY = y;
|
|
|
|
if (rotate) {
|
|
float a = bone._a, b = bone._b, c = bone._c, d = bone._d, r, cos, sin;
|
|
if (tangents)
|
|
r = positions[p - 1];
|
|
else if (_spaces[i + 1] < PathConstraint::EPSILON)
|
|
r = positions[p + 2];
|
|
else
|
|
r = MathUtil::atan2(dy, dx);
|
|
|
|
r -= MathUtil::atan2(c, a);
|
|
|
|
if (tip) {
|
|
cos = MathUtil::cos(r);
|
|
sin = MathUtil::sin(r);
|
|
float length = bone._data.getLength();
|
|
boneX += (length * (cos * a - sin * c) - dx) * rotateMix;
|
|
boneY += (length * (sin * a + cos * c) - dy) * rotateMix;
|
|
} else
|
|
r += offsetRotation;
|
|
|
|
if (r > MathUtil::Pi)
|
|
r -= MathUtil::Pi_2;
|
|
else if (r < -MathUtil::Pi)
|
|
r += MathUtil::Pi_2;
|
|
|
|
r *= rotateMix;
|
|
cos = MathUtil::cos(r);
|
|
sin = MathUtil::sin(r);
|
|
bone._a = cos * a - sin * c;
|
|
bone._b = cos * b - sin * d;
|
|
bone._c = sin * a + cos * c;
|
|
bone._d = sin * b + cos * d;
|
|
}
|
|
|
|
bone._appliedValid = false;
|
|
}
|
|
}
|
|
|
|
int PathConstraint::getOrder() {
|
|
return _data.getOrder();
|
|
}
|
|
|
|
float PathConstraint::getPosition() {
|
|
return _position;
|
|
}
|
|
|
|
void PathConstraint::setPosition(float inValue) {
|
|
_position = inValue;
|
|
}
|
|
|
|
float PathConstraint::getSpacing() {
|
|
return _spacing;
|
|
}
|
|
|
|
void PathConstraint::setSpacing(float inValue) {
|
|
_spacing = inValue;
|
|
}
|
|
|
|
float PathConstraint::getRotateMix() {
|
|
return _rotateMix;
|
|
}
|
|
|
|
void PathConstraint::setRotateMix(float inValue) {
|
|
_rotateMix = inValue;
|
|
}
|
|
|
|
float PathConstraint::getTranslateMix() {
|
|
return _translateMix;
|
|
}
|
|
|
|
void PathConstraint::setTranslateMix(float inValue) {
|
|
_translateMix = inValue;
|
|
}
|
|
|
|
Vector<Bone *> &PathConstraint::getBones() {
|
|
return _bones;
|
|
}
|
|
|
|
Slot *PathConstraint::getTarget() {
|
|
return _target;
|
|
}
|
|
|
|
void PathConstraint::setTarget(Slot *inValue) {
|
|
_target = inValue;
|
|
}
|
|
|
|
PathConstraintData &PathConstraint::getData() {
|
|
return _data;
|
|
}
|
|
|
|
Vector<float>&
|
|
PathConstraint::computeWorldPositions(PathAttachment &path, int spacesCount, bool tangents, bool percentPosition, bool percentSpacing) {
|
|
Slot &target = *_target;
|
|
float position = _position;
|
|
_positions.setSize(spacesCount * 3 + 2, 0);
|
|
Vector<float> &out = _positions;
|
|
Vector<float> &world = _world;
|
|
bool closed = path.isClosed();
|
|
int verticesLength = path.getWorldVerticesLength();
|
|
int curveCount = verticesLength / 6;
|
|
int prevCurve = NONE;
|
|
|
|
float pathLength;
|
|
if (!path.isConstantSpeed()) {
|
|
Vector<float> &lengths = path.getLengths();
|
|
curveCount -= closed ? 1 : 2;
|
|
pathLength = lengths[curveCount];
|
|
if (percentPosition) position *= pathLength;
|
|
|
|
if (percentSpacing) {
|
|
for (int i = 1; i < spacesCount; ++i)
|
|
_spaces[i] *= pathLength;
|
|
}
|
|
|
|
world.setSize(8, 0);
|
|
for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
|
|
float space = _spaces[i];
|
|
position += space;
|
|
float p = position;
|
|
|
|
if (closed) {
|
|
p = MathUtil::fmod(p, pathLength);
|
|
if (p < 0) p += pathLength;
|
|
curve = 0;
|
|
} else if (p < 0) {
|
|
if (prevCurve != BEFORE) {
|
|
prevCurve = BEFORE;
|
|
path.computeWorldVertices(target, 2, 4, world, 0);
|
|
}
|
|
|
|
addBeforePosition(p, world, 0, out, o);
|
|
|
|
continue;
|
|
} else if (p > pathLength) {
|
|
if (prevCurve != AFTER) {
|
|
prevCurve = AFTER;
|
|
path.computeWorldVertices(target, verticesLength - 6, 4, world, 0);
|
|
}
|
|
|
|
addAfterPosition(p - pathLength, world, 0, out, o);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Determine curve containing position.
|
|
for (;; curve++) {
|
|
float length = lengths[curve];
|
|
if (p > length) continue;
|
|
|
|
if (curve == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = lengths[curve - 1];
|
|
p = (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (curve != prevCurve) {
|
|
prevCurve = curve;
|
|
if (closed && curve == curveCount) {
|
|
path.computeWorldVertices(target, verticesLength - 4, 4, world, 0);
|
|
path.computeWorldVertices(target, 0, 4, world, 4);
|
|
} else
|
|
path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0);
|
|
}
|
|
|
|
addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7],
|
|
out, o, tangents || (i > 0 && space < EPSILON));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// World vertices.
|
|
if (closed) {
|
|
verticesLength += 2;
|
|
world.setSize(verticesLength, 0);
|
|
path.computeWorldVertices(target, 2, verticesLength - 4, world, 0);
|
|
path.computeWorldVertices(target, 0, 2, world, verticesLength - 4);
|
|
world[verticesLength - 2] = world[0];
|
|
world[verticesLength - 1] = world[1];
|
|
} else {
|
|
curveCount--;
|
|
verticesLength -= 4;
|
|
world.setSize(verticesLength, 0);
|
|
path.computeWorldVertices(target, 2, verticesLength, world, 0);
|
|
}
|
|
|
|
// Curve lengths.
|
|
_curves.setSize(curveCount, 0);
|
|
pathLength = 0;
|
|
float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
|
|
float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy;
|
|
for (int i = 0, w = 2; i < curveCount; i++, w += 6) {
|
|
cx1 = world[w];
|
|
cy1 = world[w + 1];
|
|
cx2 = world[w + 2];
|
|
cy2 = world[w + 3];
|
|
x2 = world[w + 4];
|
|
y2 = world[w + 5];
|
|
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f;
|
|
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f;
|
|
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f;
|
|
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f;
|
|
ddfx = tmpx * 2 + dddfx;
|
|
ddfy = tmpy * 2 + dddfy;
|
|
dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f;
|
|
dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f;
|
|
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
ddfx += dddfx;
|
|
ddfy += dddfy;
|
|
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
dfx += ddfx + dddfx;
|
|
dfy += ddfy + dddfy;
|
|
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
_curves[i] = pathLength;
|
|
x1 = x2;
|
|
y1 = y2;
|
|
}
|
|
|
|
if (percentPosition)
|
|
position *= pathLength;
|
|
else
|
|
position *= pathLength / path.getLengths()[curveCount - 1];
|
|
|
|
if (percentSpacing) {
|
|
for (int i = 1; i < spacesCount; ++i)
|
|
_spaces[i] *= pathLength;
|
|
}
|
|
|
|
float curveLength = 0;
|
|
for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
|
|
float space = _spaces[i];
|
|
position += space;
|
|
float p = position;
|
|
|
|
if (closed) {
|
|
p = MathUtil::fmod(p, pathLength);
|
|
if (p < 0) p += pathLength;
|
|
curve = 0;
|
|
} else if (p < 0) {
|
|
addBeforePosition(p, world, 0, out, o);
|
|
continue;
|
|
} else if (p > pathLength) {
|
|
addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
|
|
continue;
|
|
}
|
|
|
|
// Determine curve containing position.
|
|
for (;; curve++) {
|
|
float length = _curves[curve];
|
|
if (p > length) continue;
|
|
if (curve == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = _curves[curve - 1];
|
|
p = (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Curve segment lengths.
|
|
if (curve != prevCurve) {
|
|
prevCurve = curve;
|
|
int ii = curve * 6;
|
|
x1 = world[ii];
|
|
y1 = world[ii + 1];
|
|
cx1 = world[ii + 2];
|
|
cy1 = world[ii + 3];
|
|
cx2 = world[ii + 4];
|
|
cy2 = world[ii + 5];
|
|
x2 = world[ii + 6];
|
|
y2 = world[ii + 7];
|
|
tmpx = (x1 - cx1 * 2 + cx2) * 0.03f;
|
|
tmpy = (y1 - cy1 * 2 + cy2) * 0.03f;
|
|
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f;
|
|
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f;
|
|
ddfx = tmpx * 2 + dddfx;
|
|
ddfy = tmpy * 2 + dddfy;
|
|
dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f;
|
|
dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f;
|
|
curveLength = MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
_segments[0] = curveLength;
|
|
for (ii = 1; ii < 8; ii++) {
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
ddfx += dddfx;
|
|
ddfy += dddfy;
|
|
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
_segments[ii] = curveLength;
|
|
}
|
|
dfx += ddfx;
|
|
dfy += ddfy;
|
|
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
_segments[8] = curveLength;
|
|
dfx += ddfx + dddfx;
|
|
dfy += ddfy + dddfy;
|
|
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
|
|
_segments[9] = curveLength;
|
|
segment = 0;
|
|
}
|
|
|
|
// Weight by segment length.
|
|
p *= curveLength;
|
|
for (;; segment++) {
|
|
float length = _segments[segment];
|
|
if (p > length) continue;
|
|
if (segment == 0)
|
|
p /= length;
|
|
else {
|
|
float prev = _segments[segment - 1];
|
|
p = segment + (p - prev) / (length - prev);
|
|
}
|
|
break;
|
|
}
|
|
addCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o,
|
|
tangents || (i > 0 && space < EPSILON));
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
void PathConstraint::addBeforePosition(float p, Vector<float> &temp, int i, Vector<float> &output, int o) {
|
|
float x1 = temp[i];
|
|
float y1 = temp[i + 1];
|
|
float dx = temp[i + 2] - x1;
|
|
float dy = temp[i + 3] - y1;
|
|
float r = MathUtil::atan2(dy, dx);
|
|
output[o] = x1 + p * MathUtil::cos(r);
|
|
output[o + 1] = y1 + p * MathUtil::sin(r);
|
|
output[o + 2] = r;
|
|
}
|
|
|
|
void PathConstraint::addAfterPosition(float p, Vector<float> &temp, int i, Vector<float> &output, int o) {
|
|
float x1 = temp[i + 2];
|
|
float y1 = temp[i + 3];
|
|
float dx = x1 - temp[i];
|
|
float dy = y1 - temp[i + 1];
|
|
float r = MathUtil::atan2(dy, dx);
|
|
output[o] = x1 + p * MathUtil::cos(r);
|
|
output[o + 1] = y1 + p * MathUtil::sin(r);
|
|
output[o + 2] = r;
|
|
}
|
|
|
|
void PathConstraint::addCurvePosition(float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2,
|
|
float y2, Vector<float> &output, int o, bool tangents
|
|
) {
|
|
if (p < EPSILON || MathUtil::isNan(p)) {
|
|
output[o] = x1;
|
|
output[o + 1] = y1;
|
|
output[o + 2] = MathUtil::atan2(cy1 - y1, cx1 - x1);
|
|
return;
|
|
}
|
|
|
|
float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
|
|
float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
|
|
float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
|
|
output[o] = x;
|
|
output[o + 1] = y;
|
|
if (tangents) {
|
|
if (p < 0.001)
|
|
output[o + 2] = MathUtil::atan2(cy1 - y1, cx1 - x1);
|
|
else
|
|
output[o + 2] = MathUtil::atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
|
|
}
|
|
}
|
|
|
|
bool PathConstraint::isActive() {
|
|
return _active;
|
|
}
|
|
|
|
void PathConstraint::setActive(bool inValue) {
|
|
_active = inValue;
|
|
}
|