2022-06-25 00:23:03 +08:00

550 lines
15 KiB
C++

/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifdef SPINE_UE4
#include "SpinePluginPrivatePCH.h"
#endif
#include <spine/PathConstraint.h>
#include <spine/PathConstraintData.h>
#include <spine/Skeleton.h>
#include <spine/PathAttachment.h>
#include <spine/Bone.h>
#include <spine/Slot.h>
#include <spine/SlotData.h>
#include <spine/BoneData.h>
using namespace spine;
RTTI_IMPL(PathConstraint, Updatable)
const float PathConstraint::EPSILON = 0.00001f;
const int PathConstraint::NONE = -1;
const int PathConstraint::BEFORE = -2;
const int PathConstraint::AFTER = -3;
PathConstraint::PathConstraint(PathConstraintData &data, Skeleton &skeleton) : Updatable(),
_data(data),
_target(skeleton.findSlot(
data.getTarget()->getName())),
_position(data.getPosition()),
_spacing(data.getSpacing()),
_rotateMix(data.getRotateMix()),
_translateMix(data.getTranslateMix()),
_active(false)
{
_bones.ensureCapacity(_data.getBones().size());
for (size_t i = 0; i < _data.getBones().size(); i++) {
BoneData *boneData = _data.getBones()[i];
_bones.add(skeleton.findBone(boneData->getName()));
}
_segments.setSize(10, 0);
}
void PathConstraint::apply() {
update();
}
void PathConstraint::update() {
Attachment *baseAttachment = _target->getAttachment();
if (baseAttachment == NULL || !baseAttachment->getRTTI().instanceOf(PathAttachment::rtti)) {
return;
}
PathAttachment *attachment = static_cast<PathAttachment *>(baseAttachment);
float rotateMix = _rotateMix;
float translateMix = _translateMix;
bool translate = translateMix > 0;
bool rotate = rotateMix > 0;
if (!translate && !rotate) {
return;
}
PathConstraintData &data = _data;
bool percentSpacing = data._spacingMode == SpacingMode_Percent;
RotateMode rotateMode = data._rotateMode;
bool tangents = rotateMode == RotateMode_Tangent, scale = rotateMode == RotateMode_ChainScale;
size_t boneCount = _bones.size();
size_t spacesCount = tangents ? boneCount : boneCount + 1;
_spaces.setSize(spacesCount, 0);
float spacing = _spacing;
if (scale || !percentSpacing) {
if (scale) _lengths.setSize(boneCount, 0);
bool lengthSpacing = data._spacingMode == SpacingMode_Length;
for (size_t i = 0, n = spacesCount - 1; i < n;) {
Bone *boneP = _bones[i];
Bone &bone = *boneP;
float setupLength = bone._data.getLength();
if (setupLength < PathConstraint::EPSILON) {
if (scale) _lengths[i] = 0;
_spaces[++i] = 0;
} else if (percentSpacing) {
if (scale) {
float x = setupLength * bone._a, y = setupLength * bone._c;
float length = MathUtil::sqrt(x * x + y * y);
_lengths[i] = length;
}
_spaces[++i] = spacing;
} else {
float x = setupLength * bone._a;
float y = setupLength * bone._c;
float length = MathUtil::sqrt(x * x + y * y);
if (scale) {
_lengths[i] = length;
}
_spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
}
}
} else {
for (size_t i = 1; i < spacesCount; ++i) {
_spaces[i] = spacing;
}
}
Vector<float>& positions = computeWorldPositions(*attachment, spacesCount, tangents,
data.getPositionMode() == PositionMode_Percent, percentSpacing);
float boneX = positions[0];
float boneY = positions[1];
float offsetRotation = data.getOffsetRotation();
bool tip;
if (offsetRotation == 0) {
tip = rotateMode == RotateMode_Chain;
} else {
tip = false;
Bone &p = _target->getBone();
offsetRotation *= p.getA() * p.getD() - p.getB() * p.getC() > 0 ? MathUtil::Deg_Rad : -MathUtil::Deg_Rad;
}
for (size_t i = 0, p = 3; i < boneCount; i++, p += 3) {
Bone *boneP = _bones[i];
Bone &bone = *boneP;
bone._worldX += (boneX - bone._worldX) * translateMix;
bone._worldY += (boneY - bone._worldY) * translateMix;
float x = positions[p];
float y = positions[p + 1];
float dx = x - boneX;
float dy = y - boneY;
if (scale) {
float length = _lengths[i];
if (length >= PathConstraint::EPSILON) {
float s = (MathUtil::sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1;
bone._a *= s;
bone._c *= s;
}
}
boneX = x;
boneY = y;
if (rotate) {
float a = bone._a, b = bone._b, c = bone._c, d = bone._d, r, cos, sin;
if (tangents)
r = positions[p - 1];
else if (_spaces[i + 1] < PathConstraint::EPSILON)
r = positions[p + 2];
else
r = MathUtil::atan2(dy, dx);
r -= MathUtil::atan2(c, a);
if (tip) {
cos = MathUtil::cos(r);
sin = MathUtil::sin(r);
float length = bone._data.getLength();
boneX += (length * (cos * a - sin * c) - dx) * rotateMix;
boneY += (length * (sin * a + cos * c) - dy) * rotateMix;
} else
r += offsetRotation;
if (r > MathUtil::Pi)
r -= MathUtil::Pi_2;
else if (r < -MathUtil::Pi)
r += MathUtil::Pi_2;
r *= rotateMix;
cos = MathUtil::cos(r);
sin = MathUtil::sin(r);
bone._a = cos * a - sin * c;
bone._b = cos * b - sin * d;
bone._c = sin * a + cos * c;
bone._d = sin * b + cos * d;
}
bone._appliedValid = false;
}
}
int PathConstraint::getOrder() {
return _data.getOrder();
}
float PathConstraint::getPosition() {
return _position;
}
void PathConstraint::setPosition(float inValue) {
_position = inValue;
}
float PathConstraint::getSpacing() {
return _spacing;
}
void PathConstraint::setSpacing(float inValue) {
_spacing = inValue;
}
float PathConstraint::getRotateMix() {
return _rotateMix;
}
void PathConstraint::setRotateMix(float inValue) {
_rotateMix = inValue;
}
float PathConstraint::getTranslateMix() {
return _translateMix;
}
void PathConstraint::setTranslateMix(float inValue) {
_translateMix = inValue;
}
Vector<Bone *> &PathConstraint::getBones() {
return _bones;
}
Slot *PathConstraint::getTarget() {
return _target;
}
void PathConstraint::setTarget(Slot *inValue) {
_target = inValue;
}
PathConstraintData &PathConstraint::getData() {
return _data;
}
Vector<float>&
PathConstraint::computeWorldPositions(PathAttachment &path, int spacesCount, bool tangents, bool percentPosition, bool percentSpacing) {
Slot &target = *_target;
float position = _position;
_positions.setSize(spacesCount * 3 + 2, 0);
Vector<float> &out = _positions;
Vector<float> &world = _world;
bool closed = path.isClosed();
int verticesLength = path.getWorldVerticesLength();
int curveCount = verticesLength / 6;
int prevCurve = NONE;
float pathLength;
if (!path.isConstantSpeed()) {
Vector<float> &lengths = path.getLengths();
curveCount -= closed ? 1 : 2;
pathLength = lengths[curveCount];
if (percentPosition) position *= pathLength;
if (percentSpacing) {
for (int i = 1; i < spacesCount; ++i)
_spaces[i] *= pathLength;
}
world.setSize(8, 0);
for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
float space = _spaces[i];
position += space;
float p = position;
if (closed) {
p = MathUtil::fmod(p, pathLength);
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
if (prevCurve != BEFORE) {
prevCurve = BEFORE;
path.computeWorldVertices(target, 2, 4, world, 0);
}
addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
if (prevCurve != AFTER) {
prevCurve = AFTER;
path.computeWorldVertices(target, verticesLength - 6, 4, world, 0);
}
addAfterPosition(p - pathLength, world, 0, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
float length = lengths[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = lengths[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
if (closed && curve == curveCount) {
path.computeWorldVertices(target, verticesLength - 4, 4, world, 0);
path.computeWorldVertices(target, 0, 4, world, 4);
} else
path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0);
}
addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7],
out, o, tangents || (i > 0 && space < EPSILON));
}
return out;
}
// World vertices.
if (closed) {
verticesLength += 2;
world.setSize(verticesLength, 0);
path.computeWorldVertices(target, 2, verticesLength - 4, world, 0);
path.computeWorldVertices(target, 0, 2, world, verticesLength - 4);
world[verticesLength - 2] = world[0];
world[verticesLength - 1] = world[1];
} else {
curveCount--;
verticesLength -= 4;
world.setSize(verticesLength, 0);
path.computeWorldVertices(target, 2, verticesLength, world, 0);
}
// Curve lengths.
_curves.setSize(curveCount, 0);
pathLength = 0;
float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy;
for (int i = 0, w = 2; i < curveCount; i++, w += 6) {
cx1 = world[w];
cy1 = world[w + 1];
cx2 = world[w + 2];
cy2 = world[w + 3];
x2 = world[w + 4];
y2 = world[w + 5];
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f;
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
pathLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
_curves[i] = pathLength;
x1 = x2;
y1 = y2;
}
if (percentPosition)
position *= pathLength;
else
position *= pathLength / path.getLengths()[curveCount - 1];
if (percentSpacing) {
for (int i = 1; i < spacesCount; ++i)
_spaces[i] *= pathLength;
}
float curveLength = 0;
for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
float space = _spaces[i];
position += space;
float p = position;
if (closed) {
p = MathUtil::fmod(p, pathLength);
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
float length = _curves[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = _curves[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
// Curve segment lengths.
if (curve != prevCurve) {
prevCurve = curve;
int ii = curve * 6;
x1 = world[ii];
y1 = world[ii + 1];
cx1 = world[ii + 2];
cy1 = world[ii + 3];
cx2 = world[ii + 4];
cy2 = world[ii + 5];
x2 = world[ii + 6];
y2 = world[ii + 7];
tmpx = (x1 - cx1 * 2 + cx2) * 0.03f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.03f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f;
curveLength = MathUtil::sqrt(dfx * dfx + dfy * dfy);
_segments[0] = curveLength;
for (ii = 1; ii < 8; ii++) {
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
_segments[ii] = curveLength;
}
dfx += ddfx;
dfy += ddfy;
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
_segments[8] = curveLength;
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
curveLength += MathUtil::sqrt(dfx * dfx + dfy * dfy);
_segments[9] = curveLength;
segment = 0;
}
// Weight by segment length.
p *= curveLength;
for (;; segment++) {
float length = _segments[segment];
if (p > length) continue;
if (segment == 0)
p /= length;
else {
float prev = _segments[segment - 1];
p = segment + (p - prev) / (length - prev);
}
break;
}
addCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o,
tangents || (i > 0 && space < EPSILON));
}
return out;
}
void PathConstraint::addBeforePosition(float p, Vector<float> &temp, int i, Vector<float> &output, int o) {
float x1 = temp[i];
float y1 = temp[i + 1];
float dx = temp[i + 2] - x1;
float dy = temp[i + 3] - y1;
float r = MathUtil::atan2(dy, dx);
output[o] = x1 + p * MathUtil::cos(r);
output[o + 1] = y1 + p * MathUtil::sin(r);
output[o + 2] = r;
}
void PathConstraint::addAfterPosition(float p, Vector<float> &temp, int i, Vector<float> &output, int o) {
float x1 = temp[i + 2];
float y1 = temp[i + 3];
float dx = x1 - temp[i];
float dy = y1 - temp[i + 1];
float r = MathUtil::atan2(dy, dx);
output[o] = x1 + p * MathUtil::cos(r);
output[o + 1] = y1 + p * MathUtil::sin(r);
output[o + 2] = r;
}
void PathConstraint::addCurvePosition(float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2,
float y2, Vector<float> &output, int o, bool tangents
) {
if (p < EPSILON || MathUtil::isNan(p)) {
output[o] = x1;
output[o + 1] = y1;
output[o + 2] = MathUtil::atan2(cy1 - y1, cx1 - x1);
return;
}
float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
output[o] = x;
output[o + 1] = y;
if (tangents) {
if (p < 0.001)
output[o + 2] = MathUtil::atan2(cy1 - y1, cx1 - x1);
else
output[o + 2] = MathUtil::atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
}
}
bool PathConstraint::isActive() {
return _active;
}
void PathConstraint::setActive(bool inValue) {
_active = inValue;
}