2022-06-25 00:23:03 +08:00

541 lines
15 KiB
C++

/*
* Copyright (C) 2014 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define LOG_TAG "mp3reader"
#include <stdlib.h>
#include <assert.h>
#include <stdint.h>
#include <string.h> // Resolves that memset, memcpy aren't found while APP_PLATFORM >= 22 on Android
#include <vector>
#include "audio/android/cutils/log.h"
#include "pvmp3decoder_api.h"
#include "audio/android/mp3reader.h"
static uint32_t U32_AT(const uint8_t *ptr) {
return ptr[0] << 24 | ptr[1] << 16 | ptr[2] << 8 | ptr[3];
}
static bool parseHeader(
uint32_t header, size_t *frame_size,
uint32_t *out_sampling_rate = NULL, uint32_t *out_channels = NULL ,
uint32_t *out_bitrate = NULL, uint32_t *out_num_samples = NULL) {
*frame_size = 0;
if (out_sampling_rate) {
*out_sampling_rate = 0;
}
if (out_channels) {
*out_channels = 0;
}
if (out_bitrate) {
*out_bitrate = 0;
}
if (out_num_samples) {
*out_num_samples = 1152;
}
if ((header & 0xffe00000) != 0xffe00000) {
return false;
}
unsigned version = (header >> 19) & 3;
if (version == 0x01) {
return false;
}
unsigned layer = (header >> 17) & 3;
if (layer == 0x00) {
return false;
}
unsigned bitrate_index = (header >> 12) & 0x0f;
if (bitrate_index == 0 || bitrate_index == 0x0f) {
// Disallow "free" bitrate.
return false;
}
unsigned sampling_rate_index = (header >> 10) & 3;
if (sampling_rate_index == 3) {
return false;
}
static const int kSamplingRateV1[] = { 44100, 48000, 32000 };
int sampling_rate = kSamplingRateV1[sampling_rate_index];
if (version == 2 /* V2 */) {
sampling_rate /= 2;
} else if (version == 0 /* V2.5 */) {
sampling_rate /= 4;
}
unsigned padding = (header >> 9) & 1;
if (layer == 3) {
// layer I
static const int kBitrateV1[] = {
32, 64, 96, 128, 160, 192, 224, 256,
288, 320, 352, 384, 416, 448
};
static const int kBitrateV2[] = {
32, 48, 56, 64, 80, 96, 112, 128,
144, 160, 176, 192, 224, 256
};
int bitrate =
(version == 3 /* V1 */)
? kBitrateV1[bitrate_index - 1]
: kBitrateV2[bitrate_index - 1];
if (out_bitrate) {
*out_bitrate = bitrate;
}
*frame_size = (12000 * bitrate / sampling_rate + padding) * 4;
if (out_num_samples) {
*out_num_samples = 384;
}
} else {
// layer II or III
static const int kBitrateV1L2[] = {
32, 48, 56, 64, 80, 96, 112, 128,
160, 192, 224, 256, 320, 384
};
static const int kBitrateV1L3[] = {
32, 40, 48, 56, 64, 80, 96, 112,
128, 160, 192, 224, 256, 320
};
static const int kBitrateV2[] = {
8, 16, 24, 32, 40, 48, 56, 64,
80, 96, 112, 128, 144, 160
};
int bitrate;
if (version == 3 /* V1 */) {
bitrate = (layer == 2 /* L2 */)
? kBitrateV1L2[bitrate_index - 1]
: kBitrateV1L3[bitrate_index - 1];
if (out_num_samples) {
*out_num_samples = 1152;
}
} else {
// V2 (or 2.5)
bitrate = kBitrateV2[bitrate_index - 1];
if (out_num_samples) {
*out_num_samples = (layer == 1 /* L3 */) ? 576 : 1152;
}
}
if (out_bitrate) {
*out_bitrate = bitrate;
}
if (version == 3 /* V1 */) {
*frame_size = 144000 * bitrate / sampling_rate + padding;
} else {
// V2 or V2.5
size_t tmp = (layer == 1 /* L3 */) ? 72000 : 144000;
*frame_size = tmp * bitrate / sampling_rate + padding;
}
}
if (out_sampling_rate) {
*out_sampling_rate = sampling_rate;
}
if (out_channels) {
int channel_mode = (header >> 6) & 3;
*out_channels = (channel_mode == 3) ? 1 : 2;
}
return true;
}
// Mask to extract the version, layer, sampling rate parts of the MP3 header,
// which should be same for all MP3 frames.
static const uint32_t kMask = 0xfffe0c00;
static ssize_t sourceReadAt(mp3_callbacks *callback, void* source, off64_t offset, void *data, size_t size) {
int retVal = callback->seek(source, offset, SEEK_SET);
if (retVal != EXIT_SUCCESS) {
return 0;
} else {
return callback->read(data, 1, size, source);
}
}
// Resync to next valid MP3 frame in the file.
static bool resync(
mp3_callbacks *callback, void* source, uint32_t match_header,
off64_t *inout_pos, uint32_t *out_header) {
if (*inout_pos == 0) {
// Skip an optional ID3 header if syncing at the very beginning
// of the datasource.
for (;;) {
uint8_t id3header[10];
int retVal = sourceReadAt(callback, source, *inout_pos, id3header,
sizeof(id3header));
if (retVal < (ssize_t)sizeof(id3header)) {
// If we can't even read these 10 bytes, we might as well bail
// out, even if there _were_ 10 bytes of valid mp3 audio data...
return false;
}
if (memcmp("ID3", id3header, 3)) {
break;
}
// Skip the ID3v2 header.
size_t len =
((id3header[6] & 0x7f) << 21)
| ((id3header[7] & 0x7f) << 14)
| ((id3header[8] & 0x7f) << 7)
| (id3header[9] & 0x7f);
len += 10;
*inout_pos += len;
ALOGV("skipped ID3 tag, new starting offset is %lld (0x%016llx)",
(long long)*inout_pos, (long long)*inout_pos);
}
}
off64_t pos = *inout_pos;
bool valid = false;
const int32_t kMaxReadBytes = 1024;
const int32_t kMaxBytesChecked = 128 * 1024;
uint8_t buf[kMaxReadBytes];
ssize_t bytesToRead = kMaxReadBytes;
ssize_t totalBytesRead = 0;
ssize_t remainingBytes = 0;
bool reachEOS = false;
uint8_t *tmp = buf;
do {
if (pos >= (off64_t)(*inout_pos + kMaxBytesChecked)) {
// Don't scan forever.
ALOGV("giving up at offset %lld", (long long)pos);
break;
}
if (remainingBytes < 4) {
if (reachEOS) {
break;
} else {
memcpy(buf, tmp, remainingBytes);
bytesToRead = kMaxReadBytes - remainingBytes;
/*
* The next read position should start from the end of
* the last buffer, and thus should include the remaining
* bytes in the buffer.
*/
totalBytesRead = sourceReadAt(callback, source, pos + remainingBytes,
buf + remainingBytes, bytesToRead);
if (totalBytesRead <= 0) {
break;
}
reachEOS = (totalBytesRead != bytesToRead);
remainingBytes += totalBytesRead;
tmp = buf;
continue;
}
}
uint32_t header = U32_AT(tmp);
if (match_header != 0 && (header & kMask) != (match_header & kMask)) {
++pos;
++tmp;
--remainingBytes;
continue;
}
size_t frame_size;
uint32_t sample_rate, num_channels, bitrate;
if (!parseHeader(
header, &frame_size,
&sample_rate, &num_channels, &bitrate)) {
++pos;
++tmp;
--remainingBytes;
continue;
}
// ALOGV("found possible 1st frame at %lld (header = 0x%08x)", (long long)pos, header);
// We found what looks like a valid frame,
// now find its successors.
off64_t test_pos = pos + frame_size;
valid = true;
const int FRAME_MATCH_REQUIRED = 3;
for (int j = 0; j < FRAME_MATCH_REQUIRED; ++j) {
uint8_t tmp[4];
ssize_t retval = sourceReadAt(callback, source, test_pos, tmp, sizeof(tmp));
if (retval < (ssize_t)sizeof(tmp)) {
valid = false;
break;
}
uint32_t test_header = U32_AT(tmp);
ALOGV("subsequent header is %08x", test_header);
if ((test_header & kMask) != (header & kMask)) {
valid = false;
break;
}
size_t test_frame_size;
if (!parseHeader(test_header, &test_frame_size)) {
valid = false;
break;
}
ALOGV("found subsequent frame #%d at %lld", j + 2, (long long)test_pos);
test_pos += test_frame_size;
}
if (valid) {
*inout_pos = pos;
if (out_header != NULL) {
*out_header = header;
}
} else {
ALOGV("no dice, no valid sequence of frames found.");
}
++pos;
++tmp;
--remainingBytes;
} while (!valid);
return valid;
}
Mp3Reader::Mp3Reader() : mSource(NULL), mCallback(NULL) {
}
// Initialize the MP3 reader.
bool Mp3Reader::init(mp3_callbacks *callback, void* source) {
mSource = source;
mCallback = callback;
// Open the file.
// mFp = fopen(file, "rb");
// if (mFp == NULL) return false;
// Sync to the first valid frame.
off64_t pos = 0;
uint32_t header;
bool success = resync(callback, source, 0 /*match_header*/, &pos, &header);
if (!success)
{
ALOGE("%s, resync failed", __FUNCTION__);
return false;
}
mCurrentPos = pos;
mFixedHeader = header;
size_t frame_size;
return parseHeader(header, &frame_size, &mSampleRate,
&mNumChannels, &mBitrate);
}
// Get the next valid MP3 frame.
bool Mp3Reader::getFrame(void *buffer, uint32_t *size) {
size_t frame_size;
uint32_t bitrate;
uint32_t num_samples;
uint32_t sample_rate;
for (;;) {
ssize_t n = sourceReadAt(mCallback, mSource, mCurrentPos, buffer, 4);
if (n < 4) {
return false;
}
uint32_t header = U32_AT((const uint8_t *)buffer);
if ((header & kMask) == (mFixedHeader & kMask)
&& parseHeader(
header, &frame_size, &sample_rate, NULL /*out_channels*/,
&bitrate, &num_samples)) {
break;
}
// Lost sync.
off64_t pos = mCurrentPos;
if (!resync(mCallback, mSource, mFixedHeader, &pos, NULL /*out_header*/)) {
// Unable to resync. Signalling end of stream.
return false;
}
mCurrentPos = pos;
// Try again with the new position.
}
ssize_t n = sourceReadAt(mCallback, mSource, mCurrentPos, buffer, frame_size);
if (n < (ssize_t)frame_size) {
return false;
}
*size = frame_size;
mCurrentPos += frame_size;
return true;
}
// Close the MP3 reader.
void Mp3Reader::close() {
assert(mCallback != NULL);
mCallback->close(mSource);
}
Mp3Reader::~Mp3Reader() {
}
enum {
kInputBufferSize = 10 * 1024,
kOutputBufferSize = 4608 * 2,
};
int decodeMP3(mp3_callbacks* cb, void* source, std::vector<char>& pcmBuffer, int* numChannels, int* sampleRate, int* numFrames)
{
// Initialize the config.
tPVMP3DecoderExternal config;
config.equalizerType = flat;
config.crcEnabled = false;
// Allocate the decoder memory.
uint32_t memRequirements = pvmp3_decoderMemRequirements();
void *decoderBuf = malloc(memRequirements);
assert(decoderBuf != NULL);
// Initialize the decoder.
pvmp3_InitDecoder(&config, decoderBuf);
// Open the input file.
Mp3Reader mp3Reader;
bool success = mp3Reader.init(cb, source);
if (!success) {
ALOGE("mp3Reader.init: Encountered error reading\n");
free(decoderBuf);
return EXIT_FAILURE;
}
// Open the output file.
// SF_INFO sfInfo;
// memset(&sfInfo, 0, sizeof(SF_INFO));
// sfInfo.channels = mp3Reader.getNumChannels();
// sfInfo.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
// sfInfo.samplerate = mp3Reader.getSampleRate();
// SNDFILE *handle = sf_open(argv[2], SFM_WRITE, &sfInfo);
// if (handle == NULL) {
// ALOGE("Encountered error writing %s\n", argv[2]);
// mp3Reader.close();
// free(decoderBuf);
// return EXIT_FAILURE;
// }
// Allocate input buffer.
uint8_t *inputBuf = static_cast<uint8_t*>(malloc(kInputBufferSize));
assert(inputBuf != NULL);
// Allocate output buffer.
int16_t *outputBuf = static_cast<int16_t*>(malloc(kOutputBufferSize));
assert(outputBuf != NULL);
// Decode loop.
int retVal = EXIT_SUCCESS;
while (1) {
// Read input from the file.
uint32_t bytesRead;
bool success = mp3Reader.getFrame(inputBuf, &bytesRead);
if (!success) break;
*numChannels = mp3Reader.getNumChannels();
*sampleRate = mp3Reader.getSampleRate();
// Set the input config.
config.inputBufferCurrentLength = bytesRead;
config.inputBufferMaxLength = 0;
config.inputBufferUsedLength = 0;
config.pInputBuffer = inputBuf;
config.pOutputBuffer = outputBuf;
config.outputFrameSize = kOutputBufferSize / sizeof(int16_t);
ERROR_CODE decoderErr;
decoderErr = pvmp3_framedecoder(&config, decoderBuf);
if (decoderErr != NO_DECODING_ERROR) {
ALOGE("Decoder encountered error=%d", decoderErr);
retVal = EXIT_FAILURE;
break;
}
pcmBuffer.insert(pcmBuffer.end(), (char*)outputBuf, ((char*)outputBuf) + config.outputFrameSize * 2);
*numFrames += config.outputFrameSize / mp3Reader.getNumChannels();
}
// Close input reader and output writer.
mp3Reader.close();
// sf_close(handle);
// Free allocated memory.
free(inputBuf);
free(outputBuf);
free(decoderBuf);
return retVal;
}