mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-25 20:31:02 +00:00
355 lines
11 KiB
C++
Executable File
355 lines
11 KiB
C++
Executable File
/*
|
|
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef B2_WORLD_H
|
|
#define B2_WORLD_H
|
|
|
|
#include <Box2D/Common/b2Math.h>
|
|
#include <Box2D/Common/b2BlockAllocator.h>
|
|
#include <Box2D/Common/b2StackAllocator.h>
|
|
#include <Box2D/Dynamics/b2ContactManager.h>
|
|
#include <Box2D/Dynamics/b2WorldCallbacks.h>
|
|
#include <Box2D/Dynamics/b2TimeStep.h>
|
|
|
|
struct b2AABB;
|
|
struct b2BodyDef;
|
|
struct b2Color;
|
|
struct b2JointDef;
|
|
class b2Body;
|
|
class b2Draw;
|
|
class b2Fixture;
|
|
class b2Joint;
|
|
|
|
/// The world class manages all physics entities, dynamic simulation,
|
|
/// and asynchronous queries. The world also contains efficient memory
|
|
/// management facilities.
|
|
class b2World
|
|
{
|
|
public:
|
|
/// Construct a world object.
|
|
/// @param gravity the world gravity vector.
|
|
b2World(const b2Vec2& gravity);
|
|
|
|
/// Destruct the world. All physics entities are destroyed and all heap memory is released.
|
|
~b2World();
|
|
|
|
/// Register a destruction listener. The listener is owned by you and must
|
|
/// remain in scope.
|
|
void SetDestructionListener(b2DestructionListener* listener);
|
|
|
|
/// Register a contact filter to provide specific control over collision.
|
|
/// Otherwise the default filter is used (b2_defaultFilter). The listener is
|
|
/// owned by you and must remain in scope.
|
|
void SetContactFilter(b2ContactFilter* filter);
|
|
|
|
/// Register a contact event listener. The listener is owned by you and must
|
|
/// remain in scope.
|
|
void SetContactListener(b2ContactListener* listener);
|
|
|
|
/// Register a routine for debug drawing. The debug draw functions are called
|
|
/// inside with b2World::DrawDebugData method. The debug draw object is owned
|
|
/// by you and must remain in scope.
|
|
void SetDebugDraw(b2Draw* debugDraw);
|
|
|
|
/// Create a rigid body given a definition. No reference to the definition
|
|
/// is retained.
|
|
/// @warning This function is locked during callbacks.
|
|
b2Body* CreateBody(const b2BodyDef* def);
|
|
|
|
/// Destroy a rigid body given a definition. No reference to the definition
|
|
/// is retained. This function is locked during callbacks.
|
|
/// @warning This automatically deletes all associated shapes and joints.
|
|
/// @warning This function is locked during callbacks.
|
|
void DestroyBody(b2Body* body);
|
|
|
|
/// Create a joint to constrain bodies together. No reference to the definition
|
|
/// is retained. This may cause the connected bodies to cease colliding.
|
|
/// @warning This function is locked during callbacks.
|
|
b2Joint* CreateJoint(const b2JointDef* def);
|
|
|
|
/// Destroy a joint. This may cause the connected bodies to begin colliding.
|
|
/// @warning This function is locked during callbacks.
|
|
void DestroyJoint(b2Joint* joint);
|
|
|
|
/// Take a time step. This performs collision detection, integration,
|
|
/// and constraint solution.
|
|
/// @param timeStep the amount of time to simulate, this should not vary.
|
|
/// @param velocityIterations for the velocity constraint solver.
|
|
/// @param positionIterations for the position constraint solver.
|
|
void Step( float32 timeStep,
|
|
int32 velocityIterations,
|
|
int32 positionIterations);
|
|
|
|
/// Manually clear the force buffer on all bodies. By default, forces are cleared automatically
|
|
/// after each call to Step. The default behavior is modified by calling SetAutoClearForces.
|
|
/// The purpose of this function is to support sub-stepping. Sub-stepping is often used to maintain
|
|
/// a fixed sized time step under a variable frame-rate.
|
|
/// When you perform sub-stepping you will disable auto clearing of forces and instead call
|
|
/// ClearForces after all sub-steps are complete in one pass of your game loop.
|
|
/// @see SetAutoClearForces
|
|
void ClearForces();
|
|
|
|
/// Call this to draw shapes and other debug draw data. This is intentionally non-const.
|
|
void DrawDebugData();
|
|
|
|
/// Query the world for all fixtures that potentially overlap the
|
|
/// provided AABB.
|
|
/// @param callback a user implemented callback class.
|
|
/// @param aabb the query box.
|
|
void QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const;
|
|
|
|
/// Ray-cast the world for all fixtures in the path of the ray. Your callback
|
|
/// controls whether you get the closest point, any point, or n-points.
|
|
/// The ray-cast ignores shapes that contain the starting point.
|
|
/// @param callback a user implemented callback class.
|
|
/// @param point1 the ray starting point
|
|
/// @param point2 the ray ending point
|
|
void RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const;
|
|
|
|
/// Get the world body list. With the returned body, use b2Body::GetNext to get
|
|
/// the next body in the world list. A NULL body indicates the end of the list.
|
|
/// @return the head of the world body list.
|
|
b2Body* GetBodyList();
|
|
const b2Body* GetBodyList() const;
|
|
|
|
/// Get the world joint list. With the returned joint, use b2Joint::GetNext to get
|
|
/// the next joint in the world list. A NULL joint indicates the end of the list.
|
|
/// @return the head of the world joint list.
|
|
b2Joint* GetJointList();
|
|
const b2Joint* GetJointList() const;
|
|
|
|
/// Get the world contact list. With the returned contact, use b2Contact::GetNext to get
|
|
/// the next contact in the world list. A NULL contact indicates the end of the list.
|
|
/// @return the head of the world contact list.
|
|
/// @warning contacts are created and destroyed in the middle of a time step.
|
|
/// Use b2ContactListener to avoid missing contacts.
|
|
b2Contact* GetContactList();
|
|
const b2Contact* GetContactList() const;
|
|
|
|
/// Enable/disable sleep.
|
|
void SetAllowSleeping(bool flag);
|
|
bool GetAllowSleeping() const { return m_allowSleep; }
|
|
|
|
/// Enable/disable warm starting. For testing.
|
|
void SetWarmStarting(bool flag) { m_warmStarting = flag; }
|
|
bool GetWarmStarting() const { return m_warmStarting; }
|
|
|
|
/// Enable/disable continuous physics. For testing.
|
|
void SetContinuousPhysics(bool flag) { m_continuousPhysics = flag; }
|
|
bool GetContinuousPhysics() const { return m_continuousPhysics; }
|
|
|
|
/// Enable/disable single stepped continuous physics. For testing.
|
|
void SetSubStepping(bool flag) { m_subStepping = flag; }
|
|
bool GetSubStepping() const { return m_subStepping; }
|
|
|
|
/// Get the number of broad-phase proxies.
|
|
int32 GetProxyCount() const;
|
|
|
|
/// Get the number of bodies.
|
|
int32 GetBodyCount() const;
|
|
|
|
/// Get the number of joints.
|
|
int32 GetJointCount() const;
|
|
|
|
/// Get the number of contacts (each may have 0 or more contact points).
|
|
int32 GetContactCount() const;
|
|
|
|
/// Get the height of the dynamic tree.
|
|
int32 GetTreeHeight() const;
|
|
|
|
/// Get the balance of the dynamic tree.
|
|
int32 GetTreeBalance() const;
|
|
|
|
/// Get the quality metric of the dynamic tree. The smaller the better.
|
|
/// The minimum is 1.
|
|
float32 GetTreeQuality() const;
|
|
|
|
/// Change the global gravity vector.
|
|
void SetGravity(const b2Vec2& gravity);
|
|
|
|
/// Get the global gravity vector.
|
|
b2Vec2 GetGravity() const;
|
|
|
|
/// Is the world locked (in the middle of a time step).
|
|
bool IsLocked() const;
|
|
|
|
/// Set flag to control automatic clearing of forces after each time step.
|
|
void SetAutoClearForces(bool flag);
|
|
|
|
/// Get the flag that controls automatic clearing of forces after each time step.
|
|
bool GetAutoClearForces() const;
|
|
|
|
/// Shift the world origin. Useful for large worlds.
|
|
/// The body shift formula is: position -= newOrigin
|
|
/// @param newOrigin the new origin with respect to the old origin
|
|
void ShiftOrigin(const b2Vec2& newOrigin);
|
|
|
|
/// Get the contact manager for testing.
|
|
const b2ContactManager& GetContactManager() const;
|
|
|
|
/// Get the current profile.
|
|
const b2Profile& GetProfile() const;
|
|
|
|
/// Dump the world into the log file.
|
|
/// @warning this should be called outside of a time step.
|
|
void Dump();
|
|
|
|
private:
|
|
|
|
// m_flags
|
|
enum
|
|
{
|
|
e_newFixture = 0x0001,
|
|
e_locked = 0x0002,
|
|
e_clearForces = 0x0004
|
|
};
|
|
|
|
friend class b2Body;
|
|
friend class b2Fixture;
|
|
friend class b2ContactManager;
|
|
friend class b2Controller;
|
|
|
|
void Solve(const b2TimeStep& step);
|
|
void SolveTOI(const b2TimeStep& step);
|
|
|
|
void DrawJoint(b2Joint* joint);
|
|
void DrawShape(b2Fixture* shape, const b2Transform& xf, const b2Color& color);
|
|
|
|
b2BlockAllocator m_blockAllocator;
|
|
b2StackAllocator m_stackAllocator;
|
|
|
|
int32 m_flags;
|
|
|
|
b2ContactManager m_contactManager;
|
|
|
|
b2Body* m_bodyList;
|
|
b2Joint* m_jointList;
|
|
|
|
int32 m_bodyCount;
|
|
int32 m_jointCount;
|
|
|
|
b2Vec2 m_gravity;
|
|
bool m_allowSleep;
|
|
|
|
b2DestructionListener* m_destructionListener;
|
|
b2Draw* g_debugDraw;
|
|
|
|
// This is used to compute the time step ratio to
|
|
// support a variable time step.
|
|
float32 m_inv_dt0;
|
|
|
|
// These are for debugging the solver.
|
|
bool m_warmStarting;
|
|
bool m_continuousPhysics;
|
|
bool m_subStepping;
|
|
|
|
bool m_stepComplete;
|
|
|
|
b2Profile m_profile;
|
|
};
|
|
|
|
inline b2Body* b2World::GetBodyList()
|
|
{
|
|
return m_bodyList;
|
|
}
|
|
|
|
inline const b2Body* b2World::GetBodyList() const
|
|
{
|
|
return m_bodyList;
|
|
}
|
|
|
|
inline b2Joint* b2World::GetJointList()
|
|
{
|
|
return m_jointList;
|
|
}
|
|
|
|
inline const b2Joint* b2World::GetJointList() const
|
|
{
|
|
return m_jointList;
|
|
}
|
|
|
|
inline b2Contact* b2World::GetContactList()
|
|
{
|
|
return m_contactManager.m_contactList;
|
|
}
|
|
|
|
inline const b2Contact* b2World::GetContactList() const
|
|
{
|
|
return m_contactManager.m_contactList;
|
|
}
|
|
|
|
inline int32 b2World::GetBodyCount() const
|
|
{
|
|
return m_bodyCount;
|
|
}
|
|
|
|
inline int32 b2World::GetJointCount() const
|
|
{
|
|
return m_jointCount;
|
|
}
|
|
|
|
inline int32 b2World::GetContactCount() const
|
|
{
|
|
return m_contactManager.m_contactCount;
|
|
}
|
|
|
|
inline void b2World::SetGravity(const b2Vec2& gravity)
|
|
{
|
|
m_gravity = gravity;
|
|
}
|
|
|
|
inline b2Vec2 b2World::GetGravity() const
|
|
{
|
|
return m_gravity;
|
|
}
|
|
|
|
inline bool b2World::IsLocked() const
|
|
{
|
|
return (m_flags & e_locked) == e_locked;
|
|
}
|
|
|
|
inline void b2World::SetAutoClearForces(bool flag)
|
|
{
|
|
if (flag)
|
|
{
|
|
m_flags |= e_clearForces;
|
|
}
|
|
else
|
|
{
|
|
m_flags &= ~e_clearForces;
|
|
}
|
|
}
|
|
|
|
/// Get the flag that controls automatic clearing of forces after each time step.
|
|
inline bool b2World::GetAutoClearForces() const
|
|
{
|
|
return (m_flags & e_clearForces) == e_clearForces;
|
|
}
|
|
|
|
inline const b2ContactManager& b2World::GetContactManager() const
|
|
{
|
|
return m_contactManager;
|
|
}
|
|
|
|
inline const b2Profile& b2World::GetProfile() const
|
|
{
|
|
return m_profile;
|
|
}
|
|
|
|
#endif
|