补充某些必要的文件

This commit is contained in:
SmallMain
2022-06-25 11:52:00 +08:00
parent 4ecc470f86
commit 03533b046c
2869 changed files with 1345388 additions and 2 deletions

View File

@@ -0,0 +1,72 @@
# The V8 public C++ API
# Overview
The V8 public C++ API aims to support four use cases:
1. Enable applications that embed V8 (called the embedder) to configure and run
one or more instances of V8.
2. Expose ECMAScript-like capabilities to the embedder.
3. Enable the embedder to interact with ECMAScript by exposing API objects.
4. Provide access to the V8 debugger (inspector).
# Configuring and running an instance of V8
V8 requires access to certain OS-level primitives such as the ability to
schedule work on threads, or allocate memory.
The embedder can define how to access those primitives via the v8::Platform
interface. While V8 bundles a basic implementation, embedders are highly
encouraged to implement v8::Platform themselves.
Currently, the v8::ArrayBuffer::Allocator is passed to the v8::Isolate factory
method, however, conceptually it should also be part of the v8::Platform since
all instances of V8 should share one allocator.
Once the v8::Platform is configured, an v8::Isolate can be created. All
further interactions with V8 should explicitly reference the v8::Isolate they
refer to. All API methods should eventually take an v8::Isolate parameter.
When a given instance of V8 is no longer needed, it can be destroyed by
disposing the respective v8::Isolate. If the embedder wishes to free all memory
associated with the v8::Isolate, it has to first clear all global handles
associated with that v8::Isolate.
# ECMAScript-like capabilities
In general, the C++ API shouldn't enable capabilities that aren't available to
scripts running in V8. Experience has shown that it's not possible to maintain
such API methods in the long term. However, capabilities also available to
scripts, i.e., ones that are defined in the ECMAScript standard are there to
stay, and we can safely expose them to embedders.
The C++ API should also be pleasant to use, and not require learning new
paradigms. Similarly to how the API exposed to scripts aims to provide good
ergonomics, we should aim to provide a reasonable developer experience for this
API surface.
ECMAScript makes heavy use of exceptions, however, V8's C++ code doesn't use
C++ exceptions. Therefore, all API methods that can throw exceptions should
indicate so by returning a v8::Maybe<> or v8::MaybeLocal<> result,
and by taking a v8::Local<v8::Context> parameter that indicates in which
context a possible exception should be thrown.
# API objects
V8 allows embedders to define special objects that expose additional
capabilities and APIs to scripts. The most prominent example is exposing the
HTML DOM in Blink. Other examples are e.g. node.js. It is less clear what kind
of capabilities we want to expose via this API surface. As a rule of thumb, we
want to expose operations as defined in the WebIDL and HTML spec: we
assume that those requirements are somewhat stable, and that they are a
superset of the requirements of other embedders including node.js.
Ideally, the API surfaces defined in those specs hook into the ECMAScript spec
which in turn guarantees long-term stability of the API.
# The V8 inspector
All debugging capabilities of V8 should be exposed via the inspector protocol.
The exception to this are profiling features exposed via v8-profiler.h.
Changes to the inspector protocol need to ensure backwards compatibility and
commitment to maintain.

View File

@@ -0,0 +1,4 @@
include_rules = [
# v8-inspector-protocol.h depends on generated files under include/inspector.
"+inspector",
]

View File

@@ -0,0 +1,18 @@
adamk@chromium.org
danno@chromium.org
ulan@chromium.org
verwaest@chromium.org
yangguo@chromium.org
per-file *DEPS=file:../COMMON_OWNERS
per-file v8-internal.h=file:../COMMON_OWNERS
per-file v8-inspector.h=dgozman@chromium.org
per-file v8-inspector.h=pfeldman@chromium.org
per-file v8-inspector.h=kozyatinskiy@chromium.org
per-file v8-inspector-protocol.h=dgozman@chromium.org
per-file v8-inspector-protocol.h=pfeldman@chromium.org
per-file v8-inspector-protocol.h=kozyatinskiy@chromium.org
per-file js_protocol.pdl=dgozman@chromium.org
per-file js_protocol.pdl=pfeldman@chromium.org
# COMPONENT: Blink>JavaScript>API

View File

@@ -0,0 +1,9 @@
include_rules = [
"+libplatform/libplatform-export.h",
]
specific_include_rules = {
"libplatform\.h": [
"+libplatform/v8-tracing.h",
],
}

View File

@@ -0,0 +1,29 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_LIBPLATFORM_LIBPLATFORM_EXPORT_H_
#define V8_LIBPLATFORM_LIBPLATFORM_EXPORT_H_
#if defined(_WIN32)
#ifdef BUILDING_V8_PLATFORM_SHARED
#define V8_PLATFORM_EXPORT __declspec(dllexport)
#elif USING_V8_PLATFORM_SHARED
#define V8_PLATFORM_EXPORT __declspec(dllimport)
#else
#define V8_PLATFORM_EXPORT
#endif // BUILDING_V8_PLATFORM_SHARED
#else // defined(_WIN32)
// Setup for Linux shared library export.
#ifdef BUILDING_V8_PLATFORM_SHARED
#define V8_PLATFORM_EXPORT __attribute__((visibility("default")))
#else
#define V8_PLATFORM_EXPORT
#endif
#endif // defined(_WIN32)
#endif // V8_LIBPLATFORM_LIBPLATFORM_EXPORT_H_

View File

@@ -0,0 +1,83 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_LIBPLATFORM_LIBPLATFORM_H_
#define V8_LIBPLATFORM_LIBPLATFORM_H_
#include <memory>
#include "libplatform/libplatform-export.h"
#include "libplatform/v8-tracing.h"
#include "v8-platform.h" // NOLINT(build/include)
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
namespace platform {
enum class IdleTaskSupport { kDisabled, kEnabled };
enum class InProcessStackDumping { kDisabled, kEnabled };
enum class MessageLoopBehavior : bool {
kDoNotWait = false,
kWaitForWork = true
};
/**
* Returns a new instance of the default v8::Platform implementation.
*
* The caller will take ownership of the returned pointer. |thread_pool_size|
* is the number of worker threads to allocate for background jobs. If a value
* of zero is passed, a suitable default based on the current number of
* processors online will be chosen.
* If |idle_task_support| is enabled then the platform will accept idle
* tasks (IdleTasksEnabled will return true) and will rely on the embedder
* calling v8::platform::RunIdleTasks to process the idle tasks.
* If |tracing_controller| is nullptr, the default platform will create a
* v8::platform::TracingController instance and use it.
*/
V8_PLATFORM_EXPORT std::unique_ptr<v8::Platform> NewDefaultPlatform(
int thread_pool_size = 0,
IdleTaskSupport idle_task_support = IdleTaskSupport::kDisabled,
InProcessStackDumping in_process_stack_dumping =
InProcessStackDumping::kDisabled,
std::unique_ptr<v8::TracingController> tracing_controller = {});
/**
* Pumps the message loop for the given isolate.
*
* The caller has to make sure that this is called from the right thread.
* Returns true if a task was executed, and false otherwise. Unless requested
* through the |behavior| parameter, this call does not block if no task is
* pending. The |platform| has to be created using |NewDefaultPlatform|.
*/
V8_PLATFORM_EXPORT bool PumpMessageLoop(
v8::Platform* platform, v8::Isolate* isolate,
MessageLoopBehavior behavior = MessageLoopBehavior::kDoNotWait);
/**
* Runs pending idle tasks for at most |idle_time_in_seconds| seconds.
*
* The caller has to make sure that this is called from the right thread.
* This call does not block if no task is pending. The |platform| has to be
* created using |NewDefaultPlatform|.
*/
V8_PLATFORM_EXPORT void RunIdleTasks(v8::Platform* platform,
v8::Isolate* isolate,
double idle_time_in_seconds);
/**
* Attempts to set the tracing controller for the given platform.
*
* The |platform| has to be created using |NewDefaultPlatform|.
*
*/
V8_DEPRECATE_SOON("Access the DefaultPlatform directly")
V8_PLATFORM_EXPORT void SetTracingController(
v8::Platform* platform,
v8::platform::tracing::TracingController* tracing_controller);
} // namespace platform
} // namespace v8
#endif // V8_LIBPLATFORM_LIBPLATFORM_H_

View File

@@ -0,0 +1,318 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_LIBPLATFORM_V8_TRACING_H_
#define V8_LIBPLATFORM_V8_TRACING_H_
#include <atomic>
#include <fstream>
#include <memory>
#include <unordered_set>
#include <vector>
#include "libplatform/libplatform-export.h"
#include "v8-platform.h" // NOLINT(build/include)
namespace perfetto {
class TracingSession;
}
namespace v8 {
namespace base {
class Mutex;
} // namespace base
namespace platform {
namespace tracing {
class TraceEventListener;
class JSONTraceEventListener;
const int kTraceMaxNumArgs = 2;
class V8_PLATFORM_EXPORT TraceObject {
public:
union ArgValue {
V8_DEPRECATED("use as_uint ? true : false") bool as_bool;
uint64_t as_uint;
int64_t as_int;
double as_double;
const void* as_pointer;
const char* as_string;
};
TraceObject() = default;
~TraceObject();
void Initialize(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<v8::ConvertableToTraceFormat>* arg_convertables,
unsigned int flags, int64_t timestamp, int64_t cpu_timestamp);
void UpdateDuration(int64_t timestamp, int64_t cpu_timestamp);
void InitializeForTesting(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<v8::ConvertableToTraceFormat>* arg_convertables,
unsigned int flags, int pid, int tid, int64_t ts, int64_t tts,
uint64_t duration, uint64_t cpu_duration);
int pid() const { return pid_; }
int tid() const { return tid_; }
char phase() const { return phase_; }
const uint8_t* category_enabled_flag() const {
return category_enabled_flag_;
}
const char* name() const { return name_; }
const char* scope() const { return scope_; }
uint64_t id() const { return id_; }
uint64_t bind_id() const { return bind_id_; }
int num_args() const { return num_args_; }
const char** arg_names() { return arg_names_; }
uint8_t* arg_types() { return arg_types_; }
ArgValue* arg_values() { return arg_values_; }
std::unique_ptr<v8::ConvertableToTraceFormat>* arg_convertables() {
return arg_convertables_;
}
unsigned int flags() const { return flags_; }
int64_t ts() { return ts_; }
int64_t tts() { return tts_; }
uint64_t duration() { return duration_; }
uint64_t cpu_duration() { return cpu_duration_; }
private:
int pid_;
int tid_;
char phase_;
const char* name_;
const char* scope_;
const uint8_t* category_enabled_flag_;
uint64_t id_;
uint64_t bind_id_;
int num_args_ = 0;
const char* arg_names_[kTraceMaxNumArgs];
uint8_t arg_types_[kTraceMaxNumArgs];
ArgValue arg_values_[kTraceMaxNumArgs];
std::unique_ptr<v8::ConvertableToTraceFormat>
arg_convertables_[kTraceMaxNumArgs];
char* parameter_copy_storage_ = nullptr;
unsigned int flags_;
int64_t ts_;
int64_t tts_;
uint64_t duration_;
uint64_t cpu_duration_;
// Disallow copy and assign
TraceObject(const TraceObject&) = delete;
void operator=(const TraceObject&) = delete;
};
class V8_PLATFORM_EXPORT TraceWriter {
public:
TraceWriter() = default;
virtual ~TraceWriter() = default;
virtual void AppendTraceEvent(TraceObject* trace_event) = 0;
virtual void Flush() = 0;
static TraceWriter* CreateJSONTraceWriter(std::ostream& stream);
static TraceWriter* CreateJSONTraceWriter(std::ostream& stream,
const std::string& tag);
private:
// Disallow copy and assign
TraceWriter(const TraceWriter&) = delete;
void operator=(const TraceWriter&) = delete;
};
class V8_PLATFORM_EXPORT TraceBufferChunk {
public:
explicit TraceBufferChunk(uint32_t seq);
void Reset(uint32_t new_seq);
bool IsFull() const { return next_free_ == kChunkSize; }
TraceObject* AddTraceEvent(size_t* event_index);
TraceObject* GetEventAt(size_t index) { return &chunk_[index]; }
uint32_t seq() const { return seq_; }
size_t size() const { return next_free_; }
static const size_t kChunkSize = 64;
private:
size_t next_free_ = 0;
TraceObject chunk_[kChunkSize];
uint32_t seq_;
// Disallow copy and assign
TraceBufferChunk(const TraceBufferChunk&) = delete;
void operator=(const TraceBufferChunk&) = delete;
};
class V8_PLATFORM_EXPORT TraceBuffer {
public:
TraceBuffer() = default;
virtual ~TraceBuffer() = default;
virtual TraceObject* AddTraceEvent(uint64_t* handle) = 0;
virtual TraceObject* GetEventByHandle(uint64_t handle) = 0;
virtual bool Flush() = 0;
static const size_t kRingBufferChunks = 1024;
static TraceBuffer* CreateTraceBufferRingBuffer(size_t max_chunks,
TraceWriter* trace_writer);
private:
// Disallow copy and assign
TraceBuffer(const TraceBuffer&) = delete;
void operator=(const TraceBuffer&) = delete;
};
// Options determines how the trace buffer stores data.
enum TraceRecordMode {
// Record until the trace buffer is full.
RECORD_UNTIL_FULL,
// Record until the user ends the trace. The trace buffer is a fixed size
// and we use it as a ring buffer during recording.
RECORD_CONTINUOUSLY,
// Record until the trace buffer is full, but with a huge buffer size.
RECORD_AS_MUCH_AS_POSSIBLE,
// Echo to console. Events are discarded.
ECHO_TO_CONSOLE,
};
class V8_PLATFORM_EXPORT TraceConfig {
public:
typedef std::vector<std::string> StringList;
static TraceConfig* CreateDefaultTraceConfig();
TraceConfig() : enable_systrace_(false), enable_argument_filter_(false) {}
TraceRecordMode GetTraceRecordMode() const { return record_mode_; }
bool IsSystraceEnabled() const { return enable_systrace_; }
bool IsArgumentFilterEnabled() const { return enable_argument_filter_; }
void SetTraceRecordMode(TraceRecordMode mode) { record_mode_ = mode; }
void EnableSystrace() { enable_systrace_ = true; }
void EnableArgumentFilter() { enable_argument_filter_ = true; }
void AddIncludedCategory(const char* included_category);
bool IsCategoryGroupEnabled(const char* category_group) const;
private:
TraceRecordMode record_mode_;
bool enable_systrace_ : 1;
bool enable_argument_filter_ : 1;
StringList included_categories_;
// Disallow copy and assign
TraceConfig(const TraceConfig&) = delete;
void operator=(const TraceConfig&) = delete;
};
#if defined(_MSC_VER)
#define V8_PLATFORM_NON_EXPORTED_BASE(code) \
__pragma(warning(suppress : 4275)) code
#else
#define V8_PLATFORM_NON_EXPORTED_BASE(code) code
#endif // defined(_MSC_VER)
class V8_PLATFORM_EXPORT TracingController
: public V8_PLATFORM_NON_EXPORTED_BASE(v8::TracingController) {
public:
// The pointer returned from GetCategoryGroupEnabled() points to a value with
// zero or more of the following bits. Used in this class only. The
// TRACE_EVENT macros should only use the value as a bool. These values must
// be in sync with macro values in TraceEvent.h in Blink.
enum CategoryGroupEnabledFlags {
// Category group enabled for the recording mode.
ENABLED_FOR_RECORDING = 1 << 0,
// Category group enabled by SetEventCallbackEnabled().
ENABLED_FOR_EVENT_CALLBACK = 1 << 2,
// Category group enabled to export events to ETW.
ENABLED_FOR_ETW_EXPORT = 1 << 3
};
TracingController();
~TracingController() override;
// Takes ownership of |trace_buffer|.
void Initialize(TraceBuffer* trace_buffer);
#ifdef V8_USE_PERFETTO
// Must be called before StartTracing() if V8_USE_PERFETTO is true. Provides
// the output stream for the JSON trace data.
void InitializeForPerfetto(std::ostream* output_stream);
// Provide an optional listener for testing that will receive trace events.
// Must be called before StartTracing().
void SetTraceEventListenerForTesting(TraceEventListener* listener);
#endif
// v8::TracingController implementation.
const uint8_t* GetCategoryGroupEnabled(const char* category_group) override;
uint64_t AddTraceEvent(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<v8::ConvertableToTraceFormat>* arg_convertables,
unsigned int flags) override;
uint64_t AddTraceEventWithTimestamp(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<v8::ConvertableToTraceFormat>* arg_convertables,
unsigned int flags, int64_t timestamp) override;
void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
const char* name, uint64_t handle) override;
void AddTraceStateObserver(
v8::TracingController::TraceStateObserver* observer) override;
void RemoveTraceStateObserver(
v8::TracingController::TraceStateObserver* observer) override;
void StartTracing(TraceConfig* trace_config);
void StopTracing();
static const char* GetCategoryGroupName(const uint8_t* category_enabled_flag);
protected:
virtual int64_t CurrentTimestampMicroseconds();
virtual int64_t CurrentCpuTimestampMicroseconds();
private:
void UpdateCategoryGroupEnabledFlag(size_t category_index);
void UpdateCategoryGroupEnabledFlags();
std::unique_ptr<TraceBuffer> trace_buffer_;
std::unique_ptr<TraceConfig> trace_config_;
std::unique_ptr<base::Mutex> mutex_;
std::unordered_set<v8::TracingController::TraceStateObserver*> observers_;
std::atomic_bool recording_{false};
#ifdef V8_USE_PERFETTO
std::ostream* output_stream_ = nullptr;
std::unique_ptr<JSONTraceEventListener> json_listener_;
TraceEventListener* listener_for_testing_ = nullptr;
std::unique_ptr<perfetto::TracingSession> tracing_session_;
#endif
// Disallow copy and assign
TracingController(const TracingController&) = delete;
void operator=(const TracingController&) = delete;
};
#undef V8_PLATFORM_NON_EXPORTED_BASE
} // namespace tracing
} // namespace platform
} // namespace v8
#endif // V8_LIBPLATFORM_V8_TRACING_H_

View File

@@ -0,0 +1,13 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_V8_INSPECTOR_PROTOCOL_H_
#define V8_V8_INSPECTOR_PROTOCOL_H_
#include "inspector/Debugger.h" // NOLINT(build/include)
#include "inspector/Runtime.h" // NOLINT(build/include)
#include "inspector/Schema.h" // NOLINT(build/include)
#include "v8-inspector.h" // NOLINT(build/include)
#endif // V8_V8_INSPECTOR_PROTOCOL_H_

View File

@@ -0,0 +1,325 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_V8_INSPECTOR_H_
#define V8_V8_INSPECTOR_H_
#include <stdint.h>
#include <cctype>
#include <memory>
#include <unordered_map>
#include "v8.h" // NOLINT(build/include)
namespace v8_inspector {
namespace protocol {
namespace Debugger {
namespace API {
class SearchMatch;
}
}
namespace Runtime {
namespace API {
class RemoteObject;
class StackTrace;
class StackTraceId;
}
}
namespace Schema {
namespace API {
class Domain;
}
}
} // namespace protocol
class V8_EXPORT StringView {
public:
StringView() : m_is8Bit(true), m_length(0), m_characters8(nullptr) {}
StringView(const uint8_t* characters, size_t length)
: m_is8Bit(true), m_length(length), m_characters8(characters) {}
StringView(const uint16_t* characters, size_t length)
: m_is8Bit(false), m_length(length), m_characters16(characters) {}
bool is8Bit() const { return m_is8Bit; }
size_t length() const { return m_length; }
// TODO(dgozman): add DCHECK(m_is8Bit) to accessors once platform can be used
// here.
const uint8_t* characters8() const { return m_characters8; }
const uint16_t* characters16() const { return m_characters16; }
private:
bool m_is8Bit;
size_t m_length;
union {
const uint8_t* m_characters8;
const uint16_t* m_characters16;
};
};
class V8_EXPORT StringBuffer {
public:
virtual ~StringBuffer() = default;
virtual const StringView& string() = 0;
// This method copies contents.
static std::unique_ptr<StringBuffer> create(const StringView&);
};
class V8_EXPORT V8ContextInfo {
public:
V8ContextInfo(v8::Local<v8::Context> context, int contextGroupId,
const StringView& humanReadableName)
: context(context),
contextGroupId(contextGroupId),
humanReadableName(humanReadableName),
hasMemoryOnConsole(false) {}
v8::Local<v8::Context> context;
// Each v8::Context is a part of a group. The group id must be non-zero.
int contextGroupId;
StringView humanReadableName;
StringView origin;
StringView auxData;
bool hasMemoryOnConsole;
static int executionContextId(v8::Local<v8::Context> context);
// Disallow copying and allocating this one.
enum NotNullTagEnum { NotNullLiteral };
void* operator new(size_t) = delete;
void* operator new(size_t, NotNullTagEnum, void*) = delete;
void* operator new(size_t, void*) = delete;
V8ContextInfo(const V8ContextInfo&) = delete;
V8ContextInfo& operator=(const V8ContextInfo&) = delete;
};
class V8_EXPORT V8StackTrace {
public:
virtual StringView firstNonEmptySourceURL() const = 0;
virtual bool isEmpty() const = 0;
virtual StringView topSourceURL() const = 0;
virtual int topLineNumber() const = 0;
virtual int topColumnNumber() const = 0;
virtual StringView topScriptId() const = 0;
virtual StringView topFunctionName() const = 0;
virtual ~V8StackTrace() = default;
virtual std::unique_ptr<protocol::Runtime::API::StackTrace>
buildInspectorObject() const = 0;
virtual std::unique_ptr<protocol::Runtime::API::StackTrace>
buildInspectorObject(int maxAsyncDepth) const = 0;
virtual std::unique_ptr<StringBuffer> toString() const = 0;
// Safe to pass between threads, drops async chain.
virtual std::unique_ptr<V8StackTrace> clone() = 0;
};
class V8_EXPORT V8InspectorSession {
public:
virtual ~V8InspectorSession() = default;
// Cross-context inspectable values (DOM nodes in different worlds, etc.).
class V8_EXPORT Inspectable {
public:
virtual v8::Local<v8::Value> get(v8::Local<v8::Context>) = 0;
virtual ~Inspectable() = default;
};
virtual void addInspectedObject(std::unique_ptr<Inspectable>) = 0;
// Dispatching protocol messages.
static bool canDispatchMethod(const StringView& method);
virtual void dispatchProtocolMessage(const StringView& message) = 0;
virtual std::vector<uint8_t> state() = 0;
virtual std::vector<std::unique_ptr<protocol::Schema::API::Domain>>
supportedDomains() = 0;
// Debugger actions.
virtual void schedulePauseOnNextStatement(const StringView& breakReason,
const StringView& breakDetails) = 0;
virtual void cancelPauseOnNextStatement() = 0;
virtual void breakProgram(const StringView& breakReason,
const StringView& breakDetails) = 0;
virtual void setSkipAllPauses(bool) = 0;
virtual void resume() = 0;
virtual void stepOver() = 0;
virtual std::vector<std::unique_ptr<protocol::Debugger::API::SearchMatch>>
searchInTextByLines(const StringView& text, const StringView& query,
bool caseSensitive, bool isRegex) = 0;
// Remote objects.
virtual std::unique_ptr<protocol::Runtime::API::RemoteObject> wrapObject(
v8::Local<v8::Context>, v8::Local<v8::Value>, const StringView& groupName,
bool generatePreview) = 0;
virtual bool unwrapObject(std::unique_ptr<StringBuffer>* error,
const StringView& objectId, v8::Local<v8::Value>*,
v8::Local<v8::Context>*,
std::unique_ptr<StringBuffer>* objectGroup) = 0;
virtual void releaseObjectGroup(const StringView&) = 0;
};
class V8_EXPORT V8InspectorClient {
public:
virtual ~V8InspectorClient() = default;
virtual void runMessageLoopOnPause(int contextGroupId) {}
virtual void quitMessageLoopOnPause() {}
virtual void runIfWaitingForDebugger(int contextGroupId) {}
virtual void muteMetrics(int contextGroupId) {}
virtual void unmuteMetrics(int contextGroupId) {}
virtual void beginUserGesture() {}
virtual void endUserGesture() {}
virtual std::unique_ptr<StringBuffer> valueSubtype(v8::Local<v8::Value>) {
return nullptr;
}
virtual bool formatAccessorsAsProperties(v8::Local<v8::Value>) {
return false;
}
virtual bool isInspectableHeapObject(v8::Local<v8::Object>) { return true; }
virtual v8::Local<v8::Context> ensureDefaultContextInGroup(
int contextGroupId) {
return v8::Local<v8::Context>();
}
virtual void beginEnsureAllContextsInGroup(int contextGroupId) {}
virtual void endEnsureAllContextsInGroup(int contextGroupId) {}
virtual void installAdditionalCommandLineAPI(v8::Local<v8::Context>,
v8::Local<v8::Object>) {}
virtual void consoleAPIMessage(int contextGroupId,
v8::Isolate::MessageErrorLevel level,
const StringView& message,
const StringView& url, unsigned lineNumber,
unsigned columnNumber, V8StackTrace*) {}
virtual v8::MaybeLocal<v8::Value> memoryInfo(v8::Isolate*,
v8::Local<v8::Context>) {
return v8::MaybeLocal<v8::Value>();
}
virtual void consoleTime(const StringView& title) {}
virtual void consoleTimeEnd(const StringView& title) {}
virtual void consoleTimeStamp(const StringView& title) {}
virtual void consoleClear(int contextGroupId) {}
virtual double currentTimeMS() { return 0; }
typedef void (*TimerCallback)(void*);
virtual void startRepeatingTimer(double, TimerCallback, void* data) {}
virtual void cancelTimer(void* data) {}
// TODO(dgozman): this was added to support service worker shadow page. We
// should not connect at all.
virtual bool canExecuteScripts(int contextGroupId) { return true; }
virtual void maxAsyncCallStackDepthChanged(int depth) {}
virtual std::unique_ptr<StringBuffer> resourceNameToUrl(
const StringView& resourceName) {
return nullptr;
}
};
// These stack trace ids are intended to be passed between debuggers and be
// resolved later. This allows to track cross-debugger calls and step between
// them if a single client connects to multiple debuggers.
struct V8_EXPORT V8StackTraceId {
uintptr_t id;
std::pair<int64_t, int64_t> debugger_id;
bool should_pause = false;
V8StackTraceId();
V8StackTraceId(const V8StackTraceId&) = default;
V8StackTraceId(uintptr_t id, const std::pair<int64_t, int64_t> debugger_id);
V8StackTraceId(uintptr_t id, const std::pair<int64_t, int64_t> debugger_id,
bool should_pause);
explicit V8StackTraceId(const StringView&);
V8StackTraceId& operator=(const V8StackTraceId&) = default;
V8StackTraceId& operator=(V8StackTraceId&&) noexcept = default;
~V8StackTraceId() = default;
bool IsInvalid() const;
std::unique_ptr<StringBuffer> ToString();
};
class V8_EXPORT V8Inspector {
public:
static std::unique_ptr<V8Inspector> create(v8::Isolate*, V8InspectorClient*);
virtual ~V8Inspector() = default;
// Contexts instrumentation.
virtual void contextCreated(const V8ContextInfo&) = 0;
virtual void contextDestroyed(v8::Local<v8::Context>) = 0;
virtual void resetContextGroup(int contextGroupId) = 0;
virtual v8::MaybeLocal<v8::Context> contextById(int contextId) = 0;
// Various instrumentation.
virtual void idleStarted() = 0;
virtual void idleFinished() = 0;
// Async stack traces instrumentation.
virtual void asyncTaskScheduled(const StringView& taskName, void* task,
bool recurring) = 0;
virtual void asyncTaskCanceled(void* task) = 0;
virtual void asyncTaskStarted(void* task) = 0;
virtual void asyncTaskFinished(void* task) = 0;
virtual void allAsyncTasksCanceled() = 0;
virtual V8StackTraceId storeCurrentStackTrace(
const StringView& description) = 0;
virtual void externalAsyncTaskStarted(const V8StackTraceId& parent) = 0;
virtual void externalAsyncTaskFinished(const V8StackTraceId& parent) = 0;
// Exceptions instrumentation.
virtual unsigned exceptionThrown(
v8::Local<v8::Context>, const StringView& message,
v8::Local<v8::Value> exception, const StringView& detailedMessage,
const StringView& url, unsigned lineNumber, unsigned columnNumber,
std::unique_ptr<V8StackTrace>, int scriptId) = 0;
virtual void exceptionRevoked(v8::Local<v8::Context>, unsigned exceptionId,
const StringView& message) = 0;
// Connection.
class V8_EXPORT Channel {
public:
virtual ~Channel() = default;
virtual void sendResponse(int callId,
std::unique_ptr<StringBuffer> message) = 0;
virtual void sendNotification(std::unique_ptr<StringBuffer> message) = 0;
virtual void flushProtocolNotifications() = 0;
};
virtual std::unique_ptr<V8InspectorSession> connect(
int contextGroupId, Channel*, const StringView& state) = 0;
// API methods.
virtual std::unique_ptr<V8StackTrace> createStackTrace(
v8::Local<v8::StackTrace>) = 0;
virtual std::unique_ptr<V8StackTrace> captureStackTrace(bool fullStack) = 0;
// Performance counters.
class V8_EXPORT Counters : public std::enable_shared_from_this<Counters> {
public:
explicit Counters(v8::Isolate* isolate);
~Counters();
const std::unordered_map<std::string, int>& getCountersMap() const {
return m_countersMap;
}
private:
static int* getCounterPtr(const char* name);
v8::Isolate* m_isolate;
std::unordered_map<std::string, int> m_countersMap;
};
virtual std::shared_ptr<Counters> enableCounters() = 0;
};
} // namespace v8_inspector
#endif // V8_V8_INSPECTOR_H_

View File

@@ -0,0 +1,390 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_V8_INTERNAL_H_
#define INCLUDE_V8_INTERNAL_H_
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <type_traits>
#include "v8-version.h" // NOLINT(build/include)
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
class Context;
class Data;
class Isolate;
namespace internal {
class Isolate;
typedef uintptr_t Address;
static const Address kNullAddress = 0;
/**
* Configuration of tagging scheme.
*/
const int kApiSystemPointerSize = sizeof(void*);
const int kApiDoubleSize = sizeof(double);
const int kApiInt32Size = sizeof(int32_t);
const int kApiInt64Size = sizeof(int64_t);
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kWeakHeapObjectTag = 3;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t tagged_ptr_size>
struct SmiTagging;
constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
constexpr uintptr_t kUintptrAllBitsSet =
static_cast<uintptr_t>(kIntptrAllBitsSet);
// Smi constants for systems where tagged pointer is a 32-bit value.
template <>
struct SmiTagging<4> {
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Truncate and shift down (requires >> to be sign extending).
return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// Is value in range [kSmiMinValue, kSmiMaxValue].
// Use unsigned operations in order to avoid undefined behaviour in case of
// signed integer overflow.
return (static_cast<uintptr_t>(value) -
static_cast<uintptr_t>(kSmiMinValue)) <=
(static_cast<uintptr_t>(kSmiMaxValue) -
static_cast<uintptr_t>(kSmiMinValue));
}
};
// Smi constants for systems where tagged pointer is a 64-bit value.
template <>
struct SmiTagging<8> {
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value));
}
};
#ifdef V8_COMPRESS_POINTERS
static_assert(
kApiSystemPointerSize == kApiInt64Size,
"Pointer compression can be enabled only for 64-bit architectures");
const int kApiTaggedSize = kApiInt32Size;
#else
const int kApiTaggedSize = kApiSystemPointerSize;
#endif
#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
#else
using PlatformSmiTagging = SmiTagging<kApiTaggedSize>;
#endif
// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
// since it's used much more often than the inividual constants.
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
kSmiTag;
}
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
static const int kStringResourceOffset =
1 * kApiTaggedSize + 2 * kApiInt32Size;
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
static const int kForeignAddressOffset = kApiTaggedSize;
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
static const int kFullStringRepresentationMask = 0x0f;
static const int kStringEncodingMask = 0x8;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalOneByteRepresentationTag = 0x0a;
static const uint32_t kNumIsolateDataSlots = 4;
// IsolateData layout guarantees.
static const int kIsolateEmbedderDataOffset = 0;
static const int kExternalMemoryOffset =
kNumIsolateDataSlots * kApiSystemPointerSize;
static const int kExternalMemoryLimitOffset =
kExternalMemoryOffset + kApiInt64Size;
static const int kExternalMemoryAtLastMarkCompactOffset =
kExternalMemoryLimitOffset + kApiInt64Size;
static const int kIsolateFastCCallCallerFpOffset =
kExternalMemoryAtLastMarkCompactOffset + kApiInt64Size;
static const int kIsolateFastCCallCallerPcOffset =
kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
static const int kIsolateStackGuardOffset =
kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
static const int kIsolateRootsOffset =
kIsolateStackGuardOffset + 7 * kApiSystemPointerSize;
static const int kUndefinedValueRootIndex = 4;
static const int kTheHoleValueRootIndex = 5;
static const int kNullValueRootIndex = 6;
static const int kTrueValueRootIndex = 7;
static const int kFalseValueRootIndex = 8;
static const int kEmptyStringRootIndex = 9;
static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
static const int kNodeStateMask = 0x7;
static const int kNodeStateIsWeakValue = 2;
static const int kNodeStateIsPendingValue = 3;
static const int kFirstNonstringType = 0x40;
static const int kOddballType = 0x43;
static const int kForeignType = 0x46;
static const int kJSSpecialApiObjectType = 0x410;
static const int kJSApiObjectType = 0x420;
static const int kJSObjectType = 0x421;
static const int kUndefinedOddballKind = 5;
static const int kNullOddballKind = 3;
// Constants used by PropertyCallbackInfo to check if we should throw when an
// error occurs.
static const int kThrowOnError = 0;
static const int kDontThrow = 1;
static const int kInferShouldThrowMode = 2;
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
// incremental GC once the external memory reaches this limit.
static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static bool HasHeapObjectTag(const internal::Address value) {
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
}
V8_INLINE static int SmiValue(const internal::Address value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return internal::IntToSmi(value);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
return PlatformSmiTagging::IsValidSmi(value);
}
V8_INLINE static int GetInstanceType(const internal::Address obj) {
typedef internal::Address A;
A map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static int GetOddballKind(const internal::Address obj) {
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kFullStringRepresentationMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static uint8_t GetNodeFlag(internal::Address* obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(internal::Address* obj, bool value,
int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1U << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(internal::Address* obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(internal::Address* obj, uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
void* data) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
uint32_t slot) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
return *reinterpret_cast<void* const*>(addr);
}
V8_INLINE static internal::Address* GetRoot(v8::Isolate* isolate, int index) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateRootsOffset +
index * kApiSystemPointerSize;
return reinterpret_cast<internal::Address*>(addr);
}
template <typename T>
V8_INLINE static T ReadRawField(internal::Address heap_object_ptr,
int offset) {
internal::Address addr = heap_object_ptr + offset - kHeapObjectTag;
#ifdef V8_COMPRESS_POINTERS
if (sizeof(T) > kApiTaggedSize) {
// TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
// fields (external pointers, doubles and BigInt data) are only
// kTaggedSize aligned so we have to use unaligned pointer friendly way of
// accessing them in order to avoid undefined behavior in C++ code.
T r;
memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
return r;
}
#endif
return *reinterpret_cast<const T*>(addr);
}
V8_INLINE static internal::Address ReadTaggedPointerField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
int32_t value = ReadRawField<int32_t>(heap_object_ptr, offset);
internal::Address root = GetRootFromOnHeapAddress(heap_object_ptr);
return root + static_cast<internal::Address>(static_cast<intptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static internal::Address ReadTaggedSignedField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
int32_t value = ReadRawField<int32_t>(heap_object_ptr, offset);
return static_cast<internal::Address>(static_cast<intptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
#ifdef V8_COMPRESS_POINTERS
// See v8:7703 or src/ptr-compr.* for details about pointer compression.
static constexpr size_t kPtrComprHeapReservationSize = size_t{1} << 32;
static constexpr size_t kPtrComprIsolateRootAlignment = size_t{1} << 32;
V8_INLINE static internal::Address GetRootFromOnHeapAddress(
internal::Address addr) {
return addr & -static_cast<intptr_t>(kPtrComprIsolateRootAlignment);
}
V8_INLINE static internal::Address DecompressTaggedAnyField(
internal::Address heap_object_ptr, int32_t value) {
internal::Address root_mask = static_cast<internal::Address>(
-static_cast<intptr_t>(value & kSmiTagMask));
internal::Address root_or_zero =
root_mask & GetRootFromOnHeapAddress(heap_object_ptr);
return root_or_zero +
static_cast<internal::Address>(static_cast<intptr_t>(value));
}
#endif // V8_COMPRESS_POINTERS
};
// Only perform cast check for types derived from v8::Data since
// other types do not implement the Cast method.
template <bool PerformCheck>
struct CastCheck {
template <class T>
static void Perform(T* data);
};
template <>
template <class T>
void CastCheck<true>::Perform(T* data) {
T::Cast(data);
}
template <>
template <class T>
void CastCheck<false>::Perform(T* data) {}
template <class T>
V8_INLINE void PerformCastCheck(T* data) {
CastCheck<std::is_base_of<Data, T>::value>::Perform(data);
}
// {obj} must be the raw tagged pointer representation of a HeapObject
// that's guaranteed to never be in ReadOnlySpace.
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
// Returns if we need to throw when an error occurs. This infers the language
// mode based on the current context and the closure. This returns true if the
// language mode is strict.
V8_EXPORT bool ShouldThrowOnError(v8::internal::Isolate* isolate);
// A base class for backing stores, which is needed due to vagaries of
// how static casts work with std::shared_ptr.
class BackingStoreBase {};
} // namespace internal
} // namespace v8
#endif // INCLUDE_V8_INTERNAL_H_

View File

@@ -0,0 +1,448 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_V8_PLATFORM_H_
#define V8_V8_PLATFORM_H_
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h> // For abort.
#include <memory>
#include <string>
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
class Isolate;
/**
* A Task represents a unit of work.
*/
class Task {
public:
virtual ~Task() = default;
virtual void Run() = 0;
};
/**
* An IdleTask represents a unit of work to be performed in idle time.
* The Run method is invoked with an argument that specifies the deadline in
* seconds returned by MonotonicallyIncreasingTime().
* The idle task is expected to complete by this deadline.
*/
class IdleTask {
public:
virtual ~IdleTask() = default;
virtual void Run(double deadline_in_seconds) = 0;
};
/**
* A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
* post tasks after the isolate gets destructed, but these tasks may not get
* executed anymore. All tasks posted to a given TaskRunner will be invoked in
* sequence. Tasks can be posted from any thread.
*/
class TaskRunner {
public:
/**
* Schedules a task to be invoked by this TaskRunner. The TaskRunner
* implementation takes ownership of |task|.
*/
virtual void PostTask(std::unique_ptr<Task> task) = 0;
/**
* Schedules a task to be invoked by this TaskRunner. The TaskRunner
* implementation takes ownership of |task|. The |task| cannot be nested
* within other task executions.
*
* Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
*/
virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
/**
* Schedules a task to be invoked by this TaskRunner. The task is scheduled
* after the given number of seconds |delay_in_seconds|. The TaskRunner
* implementation takes ownership of |task|.
*/
virtual void PostDelayedTask(std::unique_ptr<Task> task,
double delay_in_seconds) = 0;
/**
* Schedules a task to be invoked by this TaskRunner. The task is scheduled
* after the given number of seconds |delay_in_seconds|. The TaskRunner
* implementation takes ownership of |task|. The |task| cannot be nested
* within other task executions.
*
* Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
*/
virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
double delay_in_seconds) {}
/**
* Schedules an idle task to be invoked by this TaskRunner. The task is
* scheduled when the embedder is idle. Requires that
* |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
* relative to other task types and may be starved for an arbitrarily long
* time if no idle time is available. The TaskRunner implementation takes
* ownership of |task|.
*/
virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
/**
* Returns true if idle tasks are enabled for this TaskRunner.
*/
virtual bool IdleTasksEnabled() = 0;
/**
* Returns true if non-nestable tasks are enabled for this TaskRunner.
*/
virtual bool NonNestableTasksEnabled() const { return false; }
/**
* Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
*/
virtual bool NonNestableDelayedTasksEnabled() const { return false; }
TaskRunner() = default;
virtual ~TaskRunner() = default;
TaskRunner(const TaskRunner&) = delete;
TaskRunner& operator=(const TaskRunner&) = delete;
};
/**
* The interface represents complex arguments to trace events.
*/
class ConvertableToTraceFormat {
public:
virtual ~ConvertableToTraceFormat() = default;
/**
* Append the class info to the provided |out| string. The appended
* data must be a valid JSON object. Strings must be properly quoted, and
* escaped. There is no processing applied to the content after it is
* appended.
*/
virtual void AppendAsTraceFormat(std::string* out) const = 0;
};
/**
* V8 Tracing controller.
*
* Can be implemented by an embedder to record trace events from V8.
*/
class TracingController {
public:
virtual ~TracingController() = default;
/**
* Called by TRACE_EVENT* macros, don't call this directly.
* The name parameter is a category group for example:
* TRACE_EVENT0("v8,parse", "V8.Parse")
* The pointer returned points to a value with zero or more of the bits
* defined in CategoryGroupEnabledFlags.
**/
virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
static uint8_t no = 0;
return &no;
}
/**
* Adds a trace event to the platform tracing system. These function calls are
* usually the result of a TRACE_* macro from trace_event_common.h when
* tracing and the category of the particular trace are enabled. It is not
* advisable to call these functions on their own; they are really only meant
* to be used by the trace macros. The returned handle can be used by
* UpdateTraceEventDuration to update the duration of COMPLETE events.
*/
virtual uint64_t AddTraceEvent(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
unsigned int flags) {
return 0;
}
virtual uint64_t AddTraceEventWithTimestamp(
char phase, const uint8_t* category_enabled_flag, const char* name,
const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
const char** arg_names, const uint8_t* arg_types,
const uint64_t* arg_values,
std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
unsigned int flags, int64_t timestamp) {
return 0;
}
/**
* Sets the duration field of a COMPLETE trace event. It must be called with
* the handle returned from AddTraceEvent().
**/
virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
const char* name, uint64_t handle) {}
class TraceStateObserver {
public:
virtual ~TraceStateObserver() = default;
virtual void OnTraceEnabled() = 0;
virtual void OnTraceDisabled() = 0;
};
/** Adds tracing state change observer. */
virtual void AddTraceStateObserver(TraceStateObserver*) {}
/** Removes tracing state change observer. */
virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
};
/**
* A V8 memory page allocator.
*
* Can be implemented by an embedder to manage large host OS allocations.
*/
class PageAllocator {
public:
virtual ~PageAllocator() = default;
/**
* Gets the page granularity for AllocatePages and FreePages. Addresses and
* lengths for those calls should be multiples of AllocatePageSize().
*/
virtual size_t AllocatePageSize() = 0;
/**
* Gets the page granularity for SetPermissions and ReleasePages. Addresses
* and lengths for those calls should be multiples of CommitPageSize().
*/
virtual size_t CommitPageSize() = 0;
/**
* Sets the random seed so that GetRandomMmapAddr() will generate repeatable
* sequences of random mmap addresses.
*/
virtual void SetRandomMmapSeed(int64_t seed) = 0;
/**
* Returns a randomized address, suitable for memory allocation under ASLR.
* The address will be aligned to AllocatePageSize.
*/
virtual void* GetRandomMmapAddr() = 0;
/**
* Memory permissions.
*/
enum Permission {
kNoAccess,
kRead,
kReadWrite,
// TODO(hpayer): Remove this flag. Memory should never be rwx.
kReadWriteExecute,
kReadExecute
};
/**
* Allocates memory in range with the given alignment and permission.
*/
virtual void* AllocatePages(void* address, size_t length, size_t alignment,
Permission permissions) = 0;
/**
* Frees memory in a range that was allocated by a call to AllocatePages.
*/
virtual bool FreePages(void* address, size_t length) = 0;
/**
* Releases memory in a range that was allocated by a call to AllocatePages.
*/
virtual bool ReleasePages(void* address, size_t length,
size_t new_length) = 0;
/**
* Sets permissions on pages in an allocated range.
*/
virtual bool SetPermissions(void* address, size_t length,
Permission permissions) = 0;
/**
* Frees memory in the given [address, address + size) range. address and size
* should be operating system page-aligned. The next write to this
* memory area brings the memory transparently back.
*/
virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
};
/**
* V8 Platform abstraction layer.
*
* The embedder has to provide an implementation of this interface before
* initializing the rest of V8.
*/
class Platform {
public:
virtual ~Platform() = default;
/**
* Allows the embedder to manage memory page allocations.
*/
virtual PageAllocator* GetPageAllocator() {
// TODO(bbudge) Make this abstract after all embedders implement this.
return nullptr;
}
/**
* Enables the embedder to respond in cases where V8 can't allocate large
* blocks of memory. V8 retries the failed allocation once after calling this
* method. On success, execution continues; otherwise V8 exits with a fatal
* error.
* Embedder overrides of this function must NOT call back into V8.
*/
virtual void OnCriticalMemoryPressure() {
// TODO(bbudge) Remove this when embedders override the following method.
// See crbug.com/634547.
}
/**
* Enables the embedder to respond in cases where V8 can't allocate large
* memory regions. The |length| parameter is the amount of memory needed.
* Returns true if memory is now available. Returns false if no memory could
* be made available. V8 will retry allocations until this method returns
* false.
*
* Embedder overrides of this function must NOT call back into V8.
*/
virtual bool OnCriticalMemoryPressure(size_t length) { return false; }
/**
* Gets the number of worker threads used by
* Call(BlockingTask)OnWorkerThread(). This can be used to estimate the number
* of tasks a work package should be split into. A return value of 0 means
* that there are no worker threads available. Note that a value of 0 won't
* prohibit V8 from posting tasks using |CallOnWorkerThread|.
*/
virtual int NumberOfWorkerThreads() = 0;
/**
* Returns a TaskRunner which can be used to post a task on the foreground.
* This function should only be called from a foreground thread.
*/
virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
Isolate* isolate) = 0;
/**
* Schedules a task to be invoked on a worker thread.
*/
virtual void CallOnWorkerThread(std::unique_ptr<Task> task) = 0;
/**
* Schedules a task that blocks the main thread to be invoked with
* high-priority on a worker thread.
*/
virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
// Embedders may optionally override this to process these tasks in a high
// priority pool.
CallOnWorkerThread(std::move(task));
}
/**
* Schedules a task to be invoked with low-priority on a worker thread.
*/
virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
// Embedders may optionally override this to process these tasks in a low
// priority pool.
CallOnWorkerThread(std::move(task));
}
/**
* Schedules a task to be invoked on a worker thread after |delay_in_seconds|
* expires.
*/
virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
double delay_in_seconds) = 0;
/**
* Schedules a task to be invoked on a foreground thread wrt a specific
* |isolate|. Tasks posted for the same isolate should be execute in order of
* scheduling. The definition of "foreground" is opaque to V8.
*/
V8_DEPRECATED("Use a taskrunner acquired by GetForegroundTaskRunner instead.")
virtual void CallOnForegroundThread(Isolate* isolate, Task* task) { abort(); }
/**
* Schedules a task to be invoked on a foreground thread wrt a specific
* |isolate| after the given number of seconds |delay_in_seconds|.
* Tasks posted for the same isolate should be execute in order of
* scheduling. The definition of "foreground" is opaque to V8.
*/
V8_DEPRECATED("Use a taskrunner acquired by GetForegroundTaskRunner instead.")
virtual void CallDelayedOnForegroundThread(Isolate* isolate, Task* task,
double delay_in_seconds) {
abort();
}
/**
* Schedules a task to be invoked on a foreground thread wrt a specific
* |isolate| when the embedder is idle.
* Requires that SupportsIdleTasks(isolate) is true.
* Idle tasks may be reordered relative to other task types and may be
* starved for an arbitrarily long time if no idle time is available.
* The definition of "foreground" is opaque to V8.
*/
V8_DEPRECATED("Use a taskrunner acquired by GetForegroundTaskRunner instead.")
virtual void CallIdleOnForegroundThread(Isolate* isolate, IdleTask* task) {
abort();
}
/**
* Returns true if idle tasks are enabled for the given |isolate|.
*/
virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
/**
* Monotonically increasing time in seconds from an arbitrary fixed point in
* the past. This function is expected to return at least
* millisecond-precision values. For this reason,
* it is recommended that the fixed point be no further in the past than
* the epoch.
**/
virtual double MonotonicallyIncreasingTime() = 0;
/**
* Current wall-clock time in milliseconds since epoch.
* This function is expected to return at least millisecond-precision values.
*/
virtual double CurrentClockTimeMillis() = 0;
typedef void (*StackTracePrinter)();
/**
* Returns a function pointer that print a stack trace of the current stack
* on invocation. Disables printing of the stack trace if nullptr.
*/
virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
/**
* Returns an instance of a v8::TracingController. This must be non-nullptr.
*/
virtual TracingController* GetTracingController() = 0;
/**
* Tells the embedder to generate and upload a crashdump during an unexpected
* but non-critical scenario.
*/
virtual void DumpWithoutCrashing() {}
protected:
/**
* Default implementation of current wall-clock time in milliseconds
* since epoch. Useful for implementing |CurrentClockTimeMillis| if
* nothing special needed.
*/
V8_EXPORT static double SystemClockTimeMillis();
};
} // namespace v8
#endif // V8_V8_PLATFORM_H_

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,50 @@
// Copyright 2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_V8_TEST_H_
#define V8_V8_TEST_H_
#include "v8.h" // NOLINT(build/include)
/**
* Testing support for the V8 JavaScript engine.
*/
namespace v8 {
class V8_EXPORT Testing {
public:
enum V8_DEPRECATED("Don't use this (d8-specific testing logic).") StressType {
kStressTypeOpt,
kStressTypeDeopt
};
/**
* Set the type of stressing to do. The default if not set is kStressTypeOpt.
*/
V8_DEPRECATED("Don't use this (d8-specific testing logic).")
static void SetStressRunType(StressType type);
/**
* Get the number of runs of a given test that is required to get the full
* stress coverage.
*/
V8_DEPRECATED("Don't use this (d8-specific testing logic).")
static int GetStressRuns();
/**
* Indicate the number of the run which is about to start. The value of run
* should be between 0 and one less than the result from GetStressRuns()
*/
V8_DEPRECATED("Don't use this (d8-specific testing logic).")
static void PrepareStressRun(int run);
/**
* Force deoptimization of all functions.
*/
V8_DEPRECATED("Don't use this (d8-specific testing logic).")
static void DeoptimizeAll(Isolate* isolate);
};
} // namespace v8
#endif // V8_V8_TEST_H_

View File

@@ -0,0 +1,652 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UTIL_H_
#define V8_UTIL_H_
#include "v8.h" // NOLINT(build/include)
#include <assert.h>
#include <map>
#include <vector>
/**
* Support for Persistent containers.
*
* C++11 embedders can use STL containers with Global values,
* but pre-C++11 does not support the required move semantic and hence
* may want these container classes.
*/
namespace v8 {
typedef uintptr_t PersistentContainerValue;
static const uintptr_t kPersistentContainerNotFound = 0;
enum PersistentContainerCallbackType {
kNotWeak,
// These correspond to v8::WeakCallbackType
kWeakWithParameter,
kWeakWithInternalFields
};
/**
* A default trait implementation for PersistentValueMap which uses std::map
* as a backing map.
*
* Users will have to implement their own weak callbacks & dispose traits.
*/
template<typename K, typename V>
class StdMapTraits {
public:
// STL map & related:
typedef std::map<K, PersistentContainerValue> Impl;
typedef typename Impl::iterator Iterator;
static bool Empty(Impl* impl) { return impl->empty(); }
static size_t Size(Impl* impl) { return impl->size(); }
static void Swap(Impl& a, Impl& b) { std::swap(a, b); } // NOLINT
static Iterator Begin(Impl* impl) { return impl->begin(); }
static Iterator End(Impl* impl) { return impl->end(); }
static K Key(Iterator it) { return it->first; }
static PersistentContainerValue Value(Iterator it) { return it->second; }
static PersistentContainerValue Set(Impl* impl, K key,
PersistentContainerValue value) {
std::pair<Iterator, bool> res = impl->insert(std::make_pair(key, value));
PersistentContainerValue old_value = kPersistentContainerNotFound;
if (!res.second) {
old_value = res.first->second;
res.first->second = value;
}
return old_value;
}
static PersistentContainerValue Get(Impl* impl, K key) {
Iterator it = impl->find(key);
if (it == impl->end()) return kPersistentContainerNotFound;
return it->second;
}
static PersistentContainerValue Remove(Impl* impl, K key) {
Iterator it = impl->find(key);
if (it == impl->end()) return kPersistentContainerNotFound;
PersistentContainerValue value = it->second;
impl->erase(it);
return value;
}
};
/**
* A default trait implementation for PersistentValueMap, which inherits
* a std:map backing map from StdMapTraits and holds non-weak persistent
* objects and has no special Dispose handling.
*
* You should not derive from this class, since MapType depends on the
* surrounding class, and hence a subclass cannot simply inherit the methods.
*/
template<typename K, typename V>
class DefaultPersistentValueMapTraits : public StdMapTraits<K, V> {
public:
// Weak callback & friends:
static const PersistentContainerCallbackType kCallbackType = kNotWeak;
typedef PersistentValueMap<K, V, DefaultPersistentValueMapTraits<K, V> >
MapType;
typedef void WeakCallbackDataType;
static WeakCallbackDataType* WeakCallbackParameter(
MapType* map, const K& key, Local<V> value) {
return nullptr;
}
static MapType* MapFromWeakCallbackInfo(
const WeakCallbackInfo<WeakCallbackDataType>& data) {
return nullptr;
}
static K KeyFromWeakCallbackInfo(
const WeakCallbackInfo<WeakCallbackDataType>& data) {
return K();
}
static void DisposeCallbackData(WeakCallbackDataType* data) { }
static void Dispose(Isolate* isolate, Global<V> value, K key) {}
};
template <typename K, typename V>
class DefaultGlobalMapTraits : public StdMapTraits<K, V> {
private:
template <typename T>
struct RemovePointer;
public:
// Weak callback & friends:
static const PersistentContainerCallbackType kCallbackType = kNotWeak;
typedef GlobalValueMap<K, V, DefaultGlobalMapTraits<K, V> > MapType;
typedef void WeakCallbackDataType;
static WeakCallbackDataType* WeakCallbackParameter(MapType* map, const K& key,
Local<V> value) {
return nullptr;
}
static MapType* MapFromWeakCallbackInfo(
const WeakCallbackInfo<WeakCallbackDataType>& data) {
return nullptr;
}
static K KeyFromWeakCallbackInfo(
const WeakCallbackInfo<WeakCallbackDataType>& data) {
return K();
}
static void DisposeCallbackData(WeakCallbackDataType* data) {}
static void OnWeakCallback(
const WeakCallbackInfo<WeakCallbackDataType>& data) {}
static void Dispose(Isolate* isolate, Global<V> value, K key) {}
// This is a second pass callback, so SetSecondPassCallback cannot be called.
static void DisposeWeak(const WeakCallbackInfo<WeakCallbackDataType>& data) {}
private:
template <typename T>
struct RemovePointer<T*> {
typedef T Type;
};
};
/**
* A map wrapper that allows using Global as a mapped value.
* C++11 embedders don't need this class, as they can use Global
* directly in std containers.
*
* The map relies on a backing map, whose type and accessors are described
* by the Traits class. The backing map will handle values of type
* PersistentContainerValue, with all conversion into and out of V8
* handles being transparently handled by this class.
*/
template <typename K, typename V, typename Traits>
class PersistentValueMapBase {
public:
Isolate* GetIsolate() { return isolate_; }
/**
* Return size of the map.
*/
size_t Size() { return Traits::Size(&impl_); }
/**
* Return whether the map holds weak persistents.
*/
bool IsWeak() { return Traits::kCallbackType != kNotWeak; }
/**
* Get value stored in map.
*/
Local<V> Get(const K& key) {
return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, key)));
}
/**
* Check whether a value is contained in the map.
*/
bool Contains(const K& key) {
return Traits::Get(&impl_, key) != kPersistentContainerNotFound;
}
/**
* Get value stored in map and set it in returnValue.
* Return true if a value was found.
*/
bool SetReturnValue(const K& key,
ReturnValue<Value> returnValue) {
return SetReturnValueFromVal(&returnValue, Traits::Get(&impl_, key));
}
/**
* Return value for key and remove it from the map.
*/
Global<V> Remove(const K& key) {
return Release(Traits::Remove(&impl_, key)).Pass();
}
/**
* Traverses the map repeatedly,
* in case side effects of disposal cause insertions.
**/
void Clear() {
typedef typename Traits::Iterator It;
HandleScope handle_scope(isolate_);
// TODO(dcarney): figure out if this swap and loop is necessary.
while (!Traits::Empty(&impl_)) {
typename Traits::Impl impl;
Traits::Swap(impl_, impl);
for (It i = Traits::Begin(&impl); i != Traits::End(&impl); ++i) {
Traits::Dispose(isolate_, Release(Traits::Value(i)).Pass(),
Traits::Key(i));
}
}
}
/**
* Helper class for GetReference/SetWithReference. Do not use outside
* that context.
*/
class PersistentValueReference {
public:
PersistentValueReference() : value_(kPersistentContainerNotFound) { }
PersistentValueReference(const PersistentValueReference& other)
: value_(other.value_) { }
Local<V> NewLocal(Isolate* isolate) const {
return Local<V>::New(isolate, FromVal(value_));
}
bool IsEmpty() const {
return value_ == kPersistentContainerNotFound;
}
template<typename T>
bool SetReturnValue(ReturnValue<T> returnValue) {
return SetReturnValueFromVal(&returnValue, value_);
}
void Reset() {
value_ = kPersistentContainerNotFound;
}
void operator=(const PersistentValueReference& other) {
value_ = other.value_;
}
private:
friend class PersistentValueMapBase;
friend class PersistentValueMap<K, V, Traits>;
friend class GlobalValueMap<K, V, Traits>;
explicit PersistentValueReference(PersistentContainerValue value)
: value_(value) { }
void operator=(PersistentContainerValue value) {
value_ = value;
}
PersistentContainerValue value_;
};
/**
* Get a reference to a map value. This enables fast, repeated access
* to a value stored in the map while the map remains unchanged.
*
* Careful: This is potentially unsafe, so please use with care.
* The value will become invalid if the value for this key changes
* in the underlying map, as a result of Set or Remove for the same
* key; as a result of the weak callback for the same key; or as a
* result of calling Clear() or destruction of the map.
*/
PersistentValueReference GetReference(const K& key) {
return PersistentValueReference(Traits::Get(&impl_, key));
}
protected:
explicit PersistentValueMapBase(Isolate* isolate)
: isolate_(isolate), label_(nullptr) {}
PersistentValueMapBase(Isolate* isolate, const char* label)
: isolate_(isolate), label_(label) {}
~PersistentValueMapBase() { Clear(); }
Isolate* isolate() { return isolate_; }
typename Traits::Impl* impl() { return &impl_; }
static V* FromVal(PersistentContainerValue v) {
return reinterpret_cast<V*>(v);
}
static PersistentContainerValue ClearAndLeak(Global<V>* persistent) {
V* v = persistent->val_;
persistent->val_ = nullptr;
return reinterpret_cast<PersistentContainerValue>(v);
}
static PersistentContainerValue Leak(Global<V>* persistent) {
return reinterpret_cast<PersistentContainerValue>(persistent->val_);
}
/**
* Return a container value as Global and make sure the weak
* callback is properly disposed of. All remove functionality should go
* through this.
*/
static Global<V> Release(PersistentContainerValue v) {
Global<V> p;
p.val_ = FromVal(v);
if (Traits::kCallbackType != kNotWeak && p.IsWeak()) {
Traits::DisposeCallbackData(
p.template ClearWeak<typename Traits::WeakCallbackDataType>());
}
return p.Pass();
}
void RemoveWeak(const K& key) {
Global<V> p;
p.val_ = FromVal(Traits::Remove(&impl_, key));
p.Reset();
}
void AnnotateStrongRetainer(Global<V>* persistent) {
persistent->AnnotateStrongRetainer(label_);
}
private:
PersistentValueMapBase(PersistentValueMapBase&);
void operator=(PersistentValueMapBase&);
static bool SetReturnValueFromVal(ReturnValue<Value>* returnValue,
PersistentContainerValue value) {
bool hasValue = value != kPersistentContainerNotFound;
if (hasValue) {
returnValue->SetInternal(
*reinterpret_cast<internal::Address*>(FromVal(value)));
}
return hasValue;
}
Isolate* isolate_;
typename Traits::Impl impl_;
const char* label_;
};
template <typename K, typename V, typename Traits>
class PersistentValueMap : public PersistentValueMapBase<K, V, Traits> {
public:
explicit PersistentValueMap(Isolate* isolate)
: PersistentValueMapBase<K, V, Traits>(isolate) {}
PersistentValueMap(Isolate* isolate, const char* label)
: PersistentValueMapBase<K, V, Traits>(isolate, label) {}
typedef
typename PersistentValueMapBase<K, V, Traits>::PersistentValueReference
PersistentValueReference;
/**
* Put value into map. Depending on Traits::kIsWeak, the value will be held
* by the map strongly or weakly.
* Returns old value as Global.
*/
Global<V> Set(const K& key, Local<V> value) {
Global<V> persistent(this->isolate(), value);
return SetUnique(key, &persistent);
}
/**
* Put value into map, like Set(const K&, Local<V>).
*/
Global<V> Set(const K& key, Global<V> value) {
return SetUnique(key, &value);
}
/**
* Put the value into the map, and set the 'weak' callback when demanded
* by the Traits class.
*/
Global<V> SetUnique(const K& key, Global<V>* persistent) {
if (Traits::kCallbackType == kNotWeak) {
this->AnnotateStrongRetainer(persistent);
} else {
WeakCallbackType callback_type =
Traits::kCallbackType == kWeakWithInternalFields
? WeakCallbackType::kInternalFields
: WeakCallbackType::kParameter;
Local<V> value(Local<V>::New(this->isolate(), *persistent));
persistent->template SetWeak<typename Traits::WeakCallbackDataType>(
Traits::WeakCallbackParameter(this, key, value), WeakCallback,
callback_type);
}
PersistentContainerValue old_value =
Traits::Set(this->impl(), key, this->ClearAndLeak(persistent));
return this->Release(old_value).Pass();
}
/**
* Put a value into the map and update the reference.
* Restrictions of GetReference apply here as well.
*/
Global<V> Set(const K& key, Global<V> value,
PersistentValueReference* reference) {
*reference = this->Leak(&value);
return SetUnique(key, &value);
}
private:
static void WeakCallback(
const WeakCallbackInfo<typename Traits::WeakCallbackDataType>& data) {
if (Traits::kCallbackType != kNotWeak) {
PersistentValueMap<K, V, Traits>* persistentValueMap =
Traits::MapFromWeakCallbackInfo(data);
K key = Traits::KeyFromWeakCallbackInfo(data);
Traits::Dispose(data.GetIsolate(),
persistentValueMap->Remove(key).Pass(), key);
Traits::DisposeCallbackData(data.GetParameter());
}
}
};
template <typename K, typename V, typename Traits>
class GlobalValueMap : public PersistentValueMapBase<K, V, Traits> {
public:
explicit GlobalValueMap(Isolate* isolate)
: PersistentValueMapBase<K, V, Traits>(isolate) {}
GlobalValueMap(Isolate* isolate, const char* label)
: PersistentValueMapBase<K, V, Traits>(isolate, label) {}
typedef
typename PersistentValueMapBase<K, V, Traits>::PersistentValueReference
PersistentValueReference;
/**
* Put value into map. Depending on Traits::kIsWeak, the value will be held
* by the map strongly or weakly.
* Returns old value as Global.
*/
Global<V> Set(const K& key, Local<V> value) {
Global<V> persistent(this->isolate(), value);
return SetUnique(key, &persistent);
}
/**
* Put value into map, like Set(const K&, Local<V>).
*/
Global<V> Set(const K& key, Global<V> value) {
return SetUnique(key, &value);
}
/**
* Put the value into the map, and set the 'weak' callback when demanded
* by the Traits class.
*/
Global<V> SetUnique(const K& key, Global<V>* persistent) {
if (Traits::kCallbackType == kNotWeak) {
this->AnnotateStrongRetainer(persistent);
} else {
WeakCallbackType callback_type =
Traits::kCallbackType == kWeakWithInternalFields
? WeakCallbackType::kInternalFields
: WeakCallbackType::kParameter;
Local<V> value(Local<V>::New(this->isolate(), *persistent));
persistent->template SetWeak<typename Traits::WeakCallbackDataType>(
Traits::WeakCallbackParameter(this, key, value), OnWeakCallback,
callback_type);
}
PersistentContainerValue old_value =
Traits::Set(this->impl(), key, this->ClearAndLeak(persistent));
return this->Release(old_value).Pass();
}
/**
* Put a value into the map and update the reference.
* Restrictions of GetReference apply here as well.
*/
Global<V> Set(const K& key, Global<V> value,
PersistentValueReference* reference) {
*reference = this->Leak(&value);
return SetUnique(key, &value);
}
private:
static void OnWeakCallback(
const WeakCallbackInfo<typename Traits::WeakCallbackDataType>& data) {
if (Traits::kCallbackType != kNotWeak) {
auto map = Traits::MapFromWeakCallbackInfo(data);
K key = Traits::KeyFromWeakCallbackInfo(data);
map->RemoveWeak(key);
Traits::OnWeakCallback(data);
data.SetSecondPassCallback(SecondWeakCallback);
}
}
static void SecondWeakCallback(
const WeakCallbackInfo<typename Traits::WeakCallbackDataType>& data) {
Traits::DisposeWeak(data);
}
};
/**
* A map that uses Global as value and std::map as the backing
* implementation. Persistents are held non-weak.
*
* C++11 embedders don't need this class, as they can use
* Global directly in std containers.
*/
template<typename K, typename V,
typename Traits = DefaultPersistentValueMapTraits<K, V> >
class StdPersistentValueMap : public PersistentValueMap<K, V, Traits> {
public:
explicit StdPersistentValueMap(Isolate* isolate)
: PersistentValueMap<K, V, Traits>(isolate) {}
};
/**
* A map that uses Global as value and std::map as the backing
* implementation. Globals are held non-weak.
*
* C++11 embedders don't need this class, as they can use
* Global directly in std containers.
*/
template <typename K, typename V,
typename Traits = DefaultGlobalMapTraits<K, V> >
class StdGlobalValueMap : public GlobalValueMap<K, V, Traits> {
public:
explicit StdGlobalValueMap(Isolate* isolate)
: GlobalValueMap<K, V, Traits>(isolate) {}
};
class DefaultPersistentValueVectorTraits {
public:
typedef std::vector<PersistentContainerValue> Impl;
static void Append(Impl* impl, PersistentContainerValue value) {
impl->push_back(value);
}
static bool IsEmpty(const Impl* impl) {
return impl->empty();
}
static size_t Size(const Impl* impl) {
return impl->size();
}
static PersistentContainerValue Get(const Impl* impl, size_t i) {
return (i < impl->size()) ? impl->at(i) : kPersistentContainerNotFound;
}
static void ReserveCapacity(Impl* impl, size_t capacity) {
impl->reserve(capacity);
}
static void Clear(Impl* impl) {
impl->clear();
}
};
/**
* A vector wrapper that safely stores Global values.
* C++11 embedders don't need this class, as they can use Global
* directly in std containers.
*
* This class relies on a backing vector implementation, whose type and methods
* are described by the Traits class. The backing map will handle values of type
* PersistentContainerValue, with all conversion into and out of V8
* handles being transparently handled by this class.
*/
template<typename V, typename Traits = DefaultPersistentValueVectorTraits>
class PersistentValueVector {
public:
explicit PersistentValueVector(Isolate* isolate) : isolate_(isolate) { }
~PersistentValueVector() {
Clear();
}
/**
* Append a value to the vector.
*/
void Append(Local<V> value) {
Global<V> persistent(isolate_, value);
Traits::Append(&impl_, ClearAndLeak(&persistent));
}
/**
* Append a persistent's value to the vector.
*/
void Append(Global<V> persistent) {
Traits::Append(&impl_, ClearAndLeak(&persistent));
}
/**
* Are there any values in the vector?
*/
bool IsEmpty() const {
return Traits::IsEmpty(&impl_);
}
/**
* How many elements are in the vector?
*/
size_t Size() const {
return Traits::Size(&impl_);
}
/**
* Retrieve the i-th value in the vector.
*/
Local<V> Get(size_t index) const {
return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, index)));
}
/**
* Remove all elements from the vector.
*/
void Clear() {
size_t length = Traits::Size(&impl_);
for (size_t i = 0; i < length; i++) {
Global<V> p;
p.val_ = FromVal(Traits::Get(&impl_, i));
}
Traits::Clear(&impl_);
}
/**
* Reserve capacity in the vector.
* (Efficiency gains depend on the backing implementation.)
*/
void ReserveCapacity(size_t capacity) {
Traits::ReserveCapacity(&impl_, capacity);
}
private:
static PersistentContainerValue ClearAndLeak(Global<V>* persistent) {
V* v = persistent->val_;
persistent->val_ = nullptr;
return reinterpret_cast<PersistentContainerValue>(v);
}
static V* FromVal(PersistentContainerValue v) {
return reinterpret_cast<V*>(v);
}
Isolate* isolate_;
typename Traits::Impl impl_;
};
} // namespace v8
#endif // V8_UTIL_H

View File

@@ -0,0 +1,24 @@
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/**
* Compile-time constants.
*
* This header provides access to information about the value serializer at
* compile time, without declaring or defining any symbols that require linking
* to V8.
*/
#ifndef INCLUDE_V8_VALUE_SERIALIZER_VERSION_H_
#define INCLUDE_V8_VALUE_SERIALIZER_VERSION_H_
#include <stdint.h>
namespace v8 {
constexpr uint32_t CurrentValueSerializerFormatVersion() { return 13; }
} // namespace v8
#endif // INCLUDE_V8_VALUE_SERIALIZER_VERSION_H_

View File

@@ -0,0 +1,38 @@
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_VERSION_STRING_H_
#define V8_VERSION_STRING_H_
#include "v8-version.h" // NOLINT(build/include)
// This is here rather than v8-version.h to keep that file simple and
// machine-processable.
#if V8_IS_CANDIDATE_VERSION
#define V8_CANDIDATE_STRING " (candidate)"
#else
#define V8_CANDIDATE_STRING ""
#endif
#ifndef V8_EMBEDDER_STRING
#define V8_EMBEDDER_STRING ""
#endif
#define V8_SX(x) #x
#define V8_S(x) V8_SX(x)
#if V8_PATCH_LEVEL > 0
#define V8_VERSION_STRING \
V8_S(V8_MAJOR_VERSION) \
"." V8_S(V8_MINOR_VERSION) "." V8_S(V8_BUILD_NUMBER) "." V8_S( \
V8_PATCH_LEVEL) V8_EMBEDDER_STRING V8_CANDIDATE_STRING
#else
#define V8_VERSION_STRING \
V8_S(V8_MAJOR_VERSION) \
"." V8_S(V8_MINOR_VERSION) "." V8_S(V8_BUILD_NUMBER) \
V8_EMBEDDER_STRING V8_CANDIDATE_STRING
#endif
#endif // V8_VERSION_STRING_H_

View File

@@ -0,0 +1,20 @@
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_INCLUDE_VERSION_H_ // V8_VERSION_H_ conflicts with src/version.h
#define V8_INCLUDE_VERSION_H_
// These macros define the version number for the current version.
// NOTE these macros are used by some of the tool scripts and the build
// system so their names cannot be changed without changing the scripts.
#define V8_MAJOR_VERSION 8
#define V8_MINOR_VERSION 0
#define V8_BUILD_NUMBER 426
#define V8_PATCH_LEVEL 16
// Use 1 for candidates and 0 otherwise.
// (Boolean macro values are not supported by all preprocessors.)
#define V8_IS_CANDIDATE_VERSION 0
#endif // V8_INCLUDE_VERSION_H_

View File

@@ -0,0 +1,31 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_TRAP_HANDLER_POSIX_H_
#define V8_WASM_TRAP_HANDLER_POSIX_H_
#include <signal.h>
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
/**
* This function determines whether a memory access violation has been an
* out-of-bounds memory access in WebAssembly. If so, it will modify the context
* parameter and add a return address where the execution can continue after the
* signal handling, and return true. Otherwise, false will be returned.
*
* The parameters to this function correspond to those passed to a Posix signal
* handler. Use this function only on Linux and Mac.
*
* \param sig_code The signal code, e.g. SIGSEGV.
* \param info A pointer to the siginfo_t struct provided to the signal handler.
* \param context A pointer to a ucontext_t struct provided to the signal
* handler.
*/
V8_EXPORT bool TryHandleWebAssemblyTrapPosix(int sig_code, siginfo_t* info,
void* context);
} // namespace v8
#endif // V8_WASM_TRAP_HANDLER_POSIX_H_

View File

@@ -0,0 +1,28 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_WASM_TRAP_HANDLER_WIN_H_
#define V8_WASM_TRAP_HANDLER_WIN_H_
#include <windows.h>
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
/**
* This function determines whether a memory access violation has been an
* out-of-bounds memory access in WebAssembly. If so, it will modify the
* exception parameter and add a return address where the execution can continue
* after the exception handling, and return true. Otherwise the return value
* will be false.
*
* The parameter to this function corresponds to the one passed to a Windows
* vectored exception handler. Use this function only on Windows.
*
* \param exception An EXCEPTION_POINTERS* as provided to the exception handler.
*/
V8_EXPORT bool TryHandleWebAssemblyTrapWindows(EXCEPTION_POINTERS* exception);
} // namespace v8
#endif // V8_WASM_TRAP_HANDLER_WIN_H_

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,466 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8CONFIG_H_
#define V8CONFIG_H_
// clang-format off
// Platform headers for feature detection below.
#if defined(__ANDROID__)
# include <sys/cdefs.h>
#elif defined(__APPLE__)
# include <TargetConditionals.h>
#elif defined(__linux__)
# include <features.h>
#endif
// This macro allows to test for the version of the GNU C library (or
// a compatible C library that masquerades as glibc). It evaluates to
// 0 if libc is not GNU libc or compatible.
// Use like:
// #if V8_GLIBC_PREREQ(2, 3)
// ...
// #endif
#if defined(__GLIBC__) && defined(__GLIBC_MINOR__)
# define V8_GLIBC_PREREQ(major, minor) \
((__GLIBC__ * 100 + __GLIBC_MINOR__) >= ((major) * 100 + (minor)))
#else
# define V8_GLIBC_PREREQ(major, minor) 0
#endif
// This macro allows to test for the version of the GNU C++ compiler.
// Note that this also applies to compilers that masquerade as GCC,
// for example clang and the Intel C++ compiler for Linux.
// Use like:
// #if V8_GNUC_PREREQ(4, 3, 1)
// ...
// #endif
#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
# define V8_GNUC_PREREQ(major, minor, patchlevel) \
((__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) >= \
((major) * 10000 + (minor) * 100 + (patchlevel)))
#elif defined(__GNUC__) && defined(__GNUC_MINOR__)
# define V8_GNUC_PREREQ(major, minor, patchlevel) \
((__GNUC__ * 10000 + __GNUC_MINOR__ * 100) >= \
((major) * 10000 + (minor) * 100 + (patchlevel)))
#else
# define V8_GNUC_PREREQ(major, minor, patchlevel) 0
#endif
// -----------------------------------------------------------------------------
// Operating system detection (host)
//
// V8_OS_ANDROID - Android
// V8_OS_BSD - BSDish (Mac OS X, Net/Free/Open/DragonFlyBSD)
// V8_OS_CYGWIN - Cygwin
// V8_OS_DRAGONFLYBSD - DragonFlyBSD
// V8_OS_FREEBSD - FreeBSD
// V8_OS_FUCHSIA - Fuchsia
// V8_OS_LINUX - Linux
// V8_OS_MACOSX - Mac OS X
// V8_OS_IOS - iOS
// V8_OS_NETBSD - NetBSD
// V8_OS_OPENBSD - OpenBSD
// V8_OS_POSIX - POSIX compatible (mostly everything except Windows)
// V8_OS_QNX - QNX Neutrino
// V8_OS_SOLARIS - Sun Solaris and OpenSolaris
// V8_OS_AIX - AIX
// V8_OS_WIN - Microsoft Windows
#if defined(__ANDROID__)
# define V8_OS_ANDROID 1
# define V8_OS_LINUX 1
# define V8_OS_POSIX 1
#elif defined(__APPLE__)
# define V8_OS_BSD 1
# define V8_OS_MACOSX 1
# define V8_OS_POSIX 1
# if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
# define V8_OS_IOS 1
# endif // defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
#elif defined(__CYGWIN__)
# define V8_OS_CYGWIN 1
# define V8_OS_POSIX 1
#elif defined(__linux__)
# define V8_OS_LINUX 1
# define V8_OS_POSIX 1
#elif defined(__sun)
# define V8_OS_POSIX 1
# define V8_OS_SOLARIS 1
#elif defined(_AIX)
#define V8_OS_POSIX 1
#define V8_OS_AIX 1
#elif defined(__FreeBSD__)
# define V8_OS_BSD 1
# define V8_OS_FREEBSD 1
# define V8_OS_POSIX 1
#elif defined(__Fuchsia__)
# define V8_OS_FUCHSIA 1
# define V8_OS_POSIX 1
#elif defined(__DragonFly__)
# define V8_OS_BSD 1
# define V8_OS_DRAGONFLYBSD 1
# define V8_OS_POSIX 1
#elif defined(__NetBSD__)
# define V8_OS_BSD 1
# define V8_OS_NETBSD 1
# define V8_OS_POSIX 1
#elif defined(__OpenBSD__)
# define V8_OS_BSD 1
# define V8_OS_OPENBSD 1
# define V8_OS_POSIX 1
#elif defined(__QNXNTO__)
# define V8_OS_POSIX 1
# define V8_OS_QNX 1
#elif defined(_WIN32)
# define V8_OS_WIN 1
#endif
// -----------------------------------------------------------------------------
// Operating system detection (target)
//
// V8_TARGET_OS_ANDROID
// V8_TARGET_OS_FUCHSIA
// V8_TARGET_OS_IOS
// V8_TARGET_OS_LINUX
// V8_TARGET_OS_MACOSX
// V8_TARGET_OS_WIN
//
// If not set explicitly, these fall back to corresponding V8_OS_ values.
#ifdef V8_HAVE_TARGET_OS
// The target OS is provided, just check that at least one known value is set.
# if !defined(V8_TARGET_OS_ANDROID) \
&& !defined(V8_TARGET_OS_FUCHSIA) \
&& !defined(V8_TARGET_OS_IOS) \
&& !defined(V8_TARGET_OS_LINUX) \
&& !defined(V8_TARGET_OS_MACOSX) \
&& !defined(V8_TARGET_OS_WIN)
# error No known target OS defined.
# endif
#else // V8_HAVE_TARGET_OS
# if defined(V8_TARGET_OS_ANDROID) \
|| defined(V8_TARGET_OS_FUCHSIA) \
|| defined(V8_TARGET_OS_IOS) \
|| defined(V8_TARGET_OS_LINUX) \
|| defined(V8_TARGET_OS_MACOSX) \
|| defined(V8_TARGET_OS_WIN)
# error A target OS is defined but V8_HAVE_TARGET_OS is unset.
# endif
// Fall back to the detected host OS.
#ifdef V8_OS_ANDROID
# define V8_TARGET_OS_ANDROID
#endif
#ifdef V8_OS_FUCHSIA
# define V8_TARGET_OS_FUCHSIA
#endif
#ifdef V8_OS_IOS
# define V8_TARGET_OS_IOS
#endif
#ifdef V8_OS_LINUX
# define V8_TARGET_OS_LINUX
#endif
#ifdef V8_OS_MACOSX
# define V8_TARGET_OS_MACOSX
#endif
#ifdef V8_OS_WIN
# define V8_TARGET_OS_WIN
#endif
#endif // V8_HAVE_TARGET_OS
// -----------------------------------------------------------------------------
// C library detection
//
// V8_LIBC_MSVCRT - MSVC libc
// V8_LIBC_BIONIC - Bionic libc
// V8_LIBC_BSD - BSD libc derivate
// V8_LIBC_GLIBC - GNU C library
// V8_LIBC_UCLIBC - uClibc
//
// Note that testing for libc must be done using #if not #ifdef. For example,
// to test for the GNU C library, use:
// #if V8_LIBC_GLIBC
// ...
// #endif
#if defined (_MSC_VER)
# define V8_LIBC_MSVCRT 1
#elif defined(__BIONIC__)
# define V8_LIBC_BIONIC 1
# define V8_LIBC_BSD 1
#elif defined(__UCLIBC__)
// Must test for UCLIBC before GLIBC, as UCLIBC pretends to be GLIBC.
# define V8_LIBC_UCLIBC 1
#elif defined(__GLIBC__) || defined(__GNU_LIBRARY__)
# define V8_LIBC_GLIBC 1
#else
# define V8_LIBC_BSD V8_OS_BSD
#endif
// -----------------------------------------------------------------------------
// Compiler detection
//
// V8_CC_GNU - GCC, or clang in gcc mode
// V8_CC_INTEL - Intel C++
// V8_CC_MINGW - Minimalist GNU for Windows
// V8_CC_MINGW32 - Minimalist GNU for Windows (mingw32)
// V8_CC_MINGW64 - Minimalist GNU for Windows (mingw-w64)
// V8_CC_MSVC - Microsoft Visual C/C++, or clang in cl.exe mode
//
// C++11 feature detection
//
// Compiler-specific feature detection
//
// V8_HAS_ATTRIBUTE_ALWAYS_INLINE - __attribute__((always_inline))
// supported
// V8_HAS_ATTRIBUTE_NONNULL - __attribute__((nonnull)) supported
// V8_HAS_ATTRIBUTE_NOINLINE - __attribute__((noinline)) supported
// V8_HAS_ATTRIBUTE_UNUSED - __attribute__((unused)) supported
// V8_HAS_ATTRIBUTE_VISIBILITY - __attribute__((visibility)) supported
// V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT - __attribute__((warn_unused_result))
// supported
// V8_HAS_BUILTIN_BSWAP16 - __builtin_bswap16() supported
// V8_HAS_BUILTIN_BSWAP32 - __builtin_bswap32() supported
// V8_HAS_BUILTIN_BSWAP64 - __builtin_bswap64() supported
// V8_HAS_BUILTIN_CLZ - __builtin_clz() supported
// V8_HAS_BUILTIN_CTZ - __builtin_ctz() supported
// V8_HAS_BUILTIN_EXPECT - __builtin_expect() supported
// V8_HAS_BUILTIN_FRAME_ADDRESS - __builtin_frame_address() supported
// V8_HAS_BUILTIN_POPCOUNT - __builtin_popcount() supported
// V8_HAS_BUILTIN_SADD_OVERFLOW - __builtin_sadd_overflow() supported
// V8_HAS_BUILTIN_SSUB_OVERFLOW - __builtin_ssub_overflow() supported
// V8_HAS_BUILTIN_UADD_OVERFLOW - __builtin_uadd_overflow() supported
// V8_HAS_COMPUTED_GOTO - computed goto/labels as values
// supported
// V8_HAS_DECLSPEC_NOINLINE - __declspec(noinline) supported
// V8_HAS_DECLSPEC_SELECTANY - __declspec(selectany) supported
// V8_HAS___FORCEINLINE - __forceinline supported
//
// Note that testing for compilers and/or features must be done using #if
// not #ifdef. For example, to test for Intel C++ Compiler, use:
// #if V8_CC_INTEL
// ...
// #endif
#if defined(__clang__)
#if defined(__GNUC__) // Clang in gcc mode.
# define V8_CC_GNU 1
#endif
# define V8_HAS_ATTRIBUTE_ALWAYS_INLINE (__has_attribute(always_inline))
# define V8_HAS_ATTRIBUTE_NONNULL (__has_attribute(nonnull))
# define V8_HAS_ATTRIBUTE_NOINLINE (__has_attribute(noinline))
# define V8_HAS_ATTRIBUTE_UNUSED (__has_attribute(unused))
# define V8_HAS_ATTRIBUTE_VISIBILITY (__has_attribute(visibility))
# define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT \
(__has_attribute(warn_unused_result))
# define V8_HAS_BUILTIN_ASSUME_ALIGNED (__has_builtin(__builtin_assume_aligned))
# define V8_HAS_BUILTIN_BSWAP16 (__has_builtin(__builtin_bswap16))
# define V8_HAS_BUILTIN_BSWAP32 (__has_builtin(__builtin_bswap32))
# define V8_HAS_BUILTIN_BSWAP64 (__has_builtin(__builtin_bswap64))
# define V8_HAS_BUILTIN_CLZ (__has_builtin(__builtin_clz))
# define V8_HAS_BUILTIN_CTZ (__has_builtin(__builtin_ctz))
# define V8_HAS_BUILTIN_EXPECT (__has_builtin(__builtin_expect))
# define V8_HAS_BUILTIN_FRAME_ADDRESS (__has_builtin(__builtin_frame_address))
# define V8_HAS_BUILTIN_POPCOUNT (__has_builtin(__builtin_popcount))
# define V8_HAS_BUILTIN_SADD_OVERFLOW (__has_builtin(__builtin_sadd_overflow))
# define V8_HAS_BUILTIN_SSUB_OVERFLOW (__has_builtin(__builtin_ssub_overflow))
# define V8_HAS_BUILTIN_UADD_OVERFLOW (__has_builtin(__builtin_uadd_overflow))
// Clang has no __has_feature for computed gotos.
// GCC doc: https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
# define V8_HAS_COMPUTED_GOTO 1
// Whether constexpr has full C++14 semantics, in particular that non-constexpr
// code is allowed as long as it's not executed for any constexpr instantiation.
# define V8_HAS_CXX14_CONSTEXPR 1
#elif defined(__GNUC__)
# define V8_CC_GNU 1
# if defined(__INTEL_COMPILER) // Intel C++ also masquerades as GCC 3.2.0
# define V8_CC_INTEL 1
# endif
# if defined(__MINGW32__)
# define V8_CC_MINGW32 1
# endif
# if defined(__MINGW64__)
# define V8_CC_MINGW64 1
# endif
# define V8_CC_MINGW (V8_CC_MINGW32 || V8_CC_MINGW64)
// always_inline is available in gcc 4.0 but not very reliable until 4.4.
// Works around "sorry, unimplemented: inlining failed" build errors with
// older compilers.
# define V8_HAS_ATTRIBUTE_ALWAYS_INLINE 1
# define V8_HAS_ATTRIBUTE_NOINLINE 1
# define V8_HAS_ATTRIBUTE_UNUSED 1
# define V8_HAS_ATTRIBUTE_VISIBILITY 1
# define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT (!V8_CC_INTEL)
# define V8_HAS_BUILTIN_ASSUME_ALIGNED 1
# define V8_HAS_BUILTIN_CLZ 1
# define V8_HAS_BUILTIN_CTZ 1
# define V8_HAS_BUILTIN_EXPECT 1
# define V8_HAS_BUILTIN_FRAME_ADDRESS 1
# define V8_HAS_BUILTIN_POPCOUNT 1
// GCC doc: https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
#define V8_HAS_COMPUTED_GOTO 1
// Whether constexpr has full C++14 semantics, in particular that non-constexpr
// code is allowed as long as it's not executed for any constexpr instantiation.
// GCC only supports this since version 6.
# define V8_HAS_CXX14_CONSTEXPR (V8_GNUC_PREREQ(6, 0, 0))
#endif
#if defined(_MSC_VER)
# define V8_CC_MSVC 1
# define V8_HAS_DECLSPEC_NOINLINE 1
# define V8_HAS_DECLSPEC_SELECTANY 1
# define V8_HAS___FORCEINLINE 1
#endif
// -----------------------------------------------------------------------------
// Helper macros
// A macro used to make better inlining. Don't bother for debug builds.
// Use like:
// V8_INLINE int GetZero() { return 0; }
#if !defined(DEBUG) && V8_HAS_ATTRIBUTE_ALWAYS_INLINE
# define V8_INLINE inline __attribute__((always_inline))
#elif !defined(DEBUG) && V8_HAS___FORCEINLINE
# define V8_INLINE __forceinline
#else
# define V8_INLINE inline
#endif
#if V8_HAS_BUILTIN_ASSUME_ALIGNED
# define V8_ASSUME_ALIGNED(ptr, alignment) \
__builtin_assume_aligned((ptr), (alignment))
#else
# define V8_ASSUME_ALIGNED(ptr, alignment) (ptr)
#endif
// A macro to mark specific arguments as non-null.
// Use like:
// int add(int* x, int y, int* z) V8_NONNULL(1, 3) { return *x + y + *z; }
#if V8_HAS_ATTRIBUTE_NONNULL
# define V8_NONNULL(...) __attribute__((nonnull(__VA_ARGS__)))
#else
# define V8_NONNULL(...) /* NOT SUPPORTED */
#endif
// A macro used to tell the compiler to never inline a particular function.
// Don't bother for debug builds.
// Use like:
// V8_NOINLINE int GetMinusOne() { return -1; }
#if !defined(DEBUG) && V8_HAS_ATTRIBUTE_NOINLINE
# define V8_NOINLINE __attribute__((noinline))
#elif !defined(DEBUG) && V8_HAS_DECLSPEC_NOINLINE
# define V8_NOINLINE __declspec(noinline)
#else
# define V8_NOINLINE /* NOT SUPPORTED */
#endif
// A macro (V8_DEPRECATED) to mark classes or functions as deprecated.
#if defined(V8_DEPRECATION_WARNINGS)
# define V8_DEPRECATED(message) [[deprecated(message)]]
#else
# define V8_DEPRECATED(message)
#endif
// A macro (V8_DEPRECATE_SOON) to make it easier to see what will be deprecated.
#if defined(V8_IMMINENT_DEPRECATION_WARNINGS)
# define V8_DEPRECATE_SOON(message) [[deprecated(message)]]
#else
# define V8_DEPRECATE_SOON(message)
#endif
// A macro to provide the compiler with branch prediction information.
#if V8_HAS_BUILTIN_EXPECT
# define V8_UNLIKELY(condition) (__builtin_expect(!!(condition), 0))
# define V8_LIKELY(condition) (__builtin_expect(!!(condition), 1))
#else
# define V8_UNLIKELY(condition) (condition)
# define V8_LIKELY(condition) (condition)
#endif
// Annotate a function indicating the caller must examine the return value.
// Use like:
// int foo() V8_WARN_UNUSED_RESULT;
#if V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT
#define V8_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#else
#define V8_WARN_UNUSED_RESULT /* NOT SUPPORTED */
#endif
#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
#error Inconsistent build configuration: To build the V8 shared library \
set BUILDING_V8_SHARED, to include its headers for linking against the \
V8 shared library set USING_V8_SHARED.
#endif
#ifdef V8_OS_WIN
// Setup for Windows DLL export/import. When building the V8 DLL the
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
// static library or building a program which uses the V8 static library neither
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
#ifdef BUILDING_V8_SHARED
# define V8_EXPORT __declspec(dllexport)
#elif USING_V8_SHARED
# define V8_EXPORT __declspec(dllimport)
#else
# define V8_EXPORT
#endif // BUILDING_V8_SHARED
#else // V8_OS_WIN
// Setup for Linux shared library export.
#if V8_HAS_ATTRIBUTE_VISIBILITY
# ifdef BUILDING_V8_SHARED
# define V8_EXPORT __attribute__ ((visibility("default")))
# else
# define V8_EXPORT
# endif
#else
# define V8_EXPORT
#endif
#endif // V8_OS_WIN
// clang-format on
#endif // V8CONFIG_H_