mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-27 21:31:02 +00:00
376 lines
9.1 KiB
C++
376 lines
9.1 KiB
C++
|
/****************************************************************************
|
||
|
Copyright (c) 2018 Xiamen Yaji Software Co., Ltd.
|
||
|
|
||
|
http://www.cocos2d-x.org
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
****************************************************************************/
|
||
|
|
||
|
#include "math/Mat3.hpp"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include "math/Quaternion.h"
|
||
|
#include "math/MathUtil.h"
|
||
|
#include "base/ccMacros.h"
|
||
|
|
||
|
NS_CC_MATH_BEGIN
|
||
|
|
||
|
Mat3::Mat3()
|
||
|
{
|
||
|
*this = IDENTITY;
|
||
|
}
|
||
|
|
||
|
Mat3::Mat3(float m11, float m12, float m13, float m21, float m22, float m23,
|
||
|
float m31, float m32, float m33)
|
||
|
{
|
||
|
set(m11, m12, m13, m21, m22, m23, m31, m32, m33);
|
||
|
}
|
||
|
|
||
|
Mat3::Mat3(const float* mat)
|
||
|
{
|
||
|
set(mat);
|
||
|
}
|
||
|
|
||
|
Mat3::Mat3(const Mat3& copy)
|
||
|
{
|
||
|
memcpy(m, copy.m, MATRIX3_SIZE);
|
||
|
}
|
||
|
|
||
|
Mat3::~Mat3()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void Mat3::set(float m11, float m12, float m13, float m21, float m22, float m23, float m31, float m32, float m33)
|
||
|
{
|
||
|
m[0] = m11;
|
||
|
m[1] = m21;
|
||
|
m[2] = m31;
|
||
|
m[3] = m12;
|
||
|
m[4] = m22;
|
||
|
m[5] = m32;
|
||
|
m[6] = m13;
|
||
|
m[7] = m23;
|
||
|
m[8] = m33;
|
||
|
}
|
||
|
|
||
|
void Mat3::set(const float* mat)
|
||
|
{
|
||
|
GP_ASSERT(mat);
|
||
|
memcpy(this->m, mat, MATRIX3_SIZE);
|
||
|
}
|
||
|
|
||
|
void Mat3::set(const Mat3& mat)
|
||
|
{
|
||
|
memcpy(this->m, mat.m, MATRIX3_SIZE);
|
||
|
}
|
||
|
|
||
|
void Mat3::identity(Mat3& mat)
|
||
|
{
|
||
|
mat.m[0] = 1;
|
||
|
mat.m[1] = 0;
|
||
|
mat.m[2] = 0;
|
||
|
mat.m[3] = 0;
|
||
|
mat.m[4] = 1;
|
||
|
mat.m[5] = 0;
|
||
|
mat.m[6] = 0;
|
||
|
mat.m[7] = 0;
|
||
|
mat.m[8] = 1;
|
||
|
}
|
||
|
|
||
|
void Mat3::transpose()
|
||
|
{
|
||
|
float a01 = m[1], a02 = m[2], a12 = m[5];
|
||
|
m[1] = m[3];
|
||
|
m[2] = m[6];
|
||
|
m[3] = a01;
|
||
|
m[5] = m[7];
|
||
|
m[6] = a02;
|
||
|
m[7] = a12;
|
||
|
}
|
||
|
|
||
|
void Mat3::transpose(Mat3 &out, const Mat3 &mat)
|
||
|
{
|
||
|
out.m[0] = mat.m[0];
|
||
|
out.m[1] = mat.m[3];
|
||
|
out.m[2] = mat.m[6];
|
||
|
out.m[3] = mat.m[1];
|
||
|
out.m[4] = mat.m[4];
|
||
|
out.m[5] = mat.m[7];
|
||
|
out.m[6] = mat.m[2];
|
||
|
out.m[7] = mat.m[5];
|
||
|
out.m[8] = mat.m[8];
|
||
|
}
|
||
|
|
||
|
void Mat3::inverse()
|
||
|
{
|
||
|
float a00 = m[0], a01 = m[1], a02 = m[2];
|
||
|
float a10 = m[3], a11 = m[4], a12 = m[5];
|
||
|
float a20 = m[6], a21 = m[7], a22 = m[8];
|
||
|
|
||
|
float b01 = a22 * a11 - a12 * a21;
|
||
|
float b11 = -a22 * a10 + a12 * a20;
|
||
|
float b21 = a21 * a10 - a11 * a20;
|
||
|
|
||
|
// Calculate the determinant
|
||
|
float det = a00 * b01 + a01 * b11 + a02 * b21;
|
||
|
|
||
|
det = 1.0 / det;
|
||
|
m[0] = b01 * det;
|
||
|
m[1] = (-a22 * a01 + a02 * a21) * det;
|
||
|
m[2] = (a12 * a01 - a02 * a11) * det;
|
||
|
m[3] = b11 * det;
|
||
|
m[4] = (a22 * a00 - a02 * a20) * det;
|
||
|
m[5] = (-a12 * a00 + a02 * a10) * det;
|
||
|
m[6] = b21 * det;
|
||
|
m[7] = (-a21 * a00 + a01 * a20) * det;
|
||
|
m[8] = (a11 * a00 - a01 * a10) * det;
|
||
|
}
|
||
|
|
||
|
void Mat3::adjoint(Mat3 &out, const Mat3 &mat)
|
||
|
{
|
||
|
float a00 = mat.m[0], a01 = mat.m[1], a02 = mat.m[2];
|
||
|
float a10 = mat.m[3], a11 = mat.m[4], a12 = mat.m[5];
|
||
|
float a20 = mat.m[6], a21 = mat.m[7], a22 = mat.m[8];
|
||
|
|
||
|
out.m[0] = (a11 * a22 - a12 * a21);
|
||
|
out.m[1] = (a02 * a21 - a01 * a22);
|
||
|
out.m[2] = (a01 * a12 - a02 * a11);
|
||
|
out.m[3] = (a12 * a20 - a10 * a22);
|
||
|
out.m[4] = (a00 * a22 - a02 * a20);
|
||
|
out.m[5] = (a02 * a10 - a00 * a12);
|
||
|
out.m[6] = (a10 * a21 - a11 * a20);
|
||
|
out.m[7] = (a01 * a20 - a00 * a21);
|
||
|
out.m[8] = (a00 * a11 - a01 * a10);
|
||
|
}
|
||
|
|
||
|
float Mat3::determinant()
|
||
|
{
|
||
|
return m[0] * (m[8] * m[4] - m[5] * m[7]) + m[1] * (-m[8] * m[3] + m[5] * m[6]) + m[2] * (m[7] * m[3] - m[4] * m[6]);
|
||
|
}
|
||
|
|
||
|
void Mat3::multiply(Mat3 &out, const Mat3 &a, const Mat3 &b)
|
||
|
{
|
||
|
float a00 = a.m[0], a01 = a.m[1], a02 = a.m[2];
|
||
|
float a10 = a.m[3], a11 = a.m[4], a12 = a.m[5];
|
||
|
float a20 = a.m[6], a21 = a.m[7], a22 = a.m[8];
|
||
|
|
||
|
float b00 = b.m[0], b01 = b.m[1], b02 = b.m[2];
|
||
|
float b10 = b.m[3], b11 = b.m[4], b12 = b.m[5];
|
||
|
float b20 = b.m[6], b21 = b.m[7], b22 = b.m[8];
|
||
|
|
||
|
out.m[0] = b00 * a00 + b01 * a10 + b02 * a20;
|
||
|
out.m[1] = b00 * a01 + b01 * a11 + b02 * a21;
|
||
|
out.m[2] = b00 * a02 + b01 * a12 + b02 * a22;
|
||
|
|
||
|
out.m[3] = b10 * a00 + b11 * a10 + b12 * a20;
|
||
|
out.m[4] = b10 * a01 + b11 * a11 + b12 * a21;
|
||
|
out.m[5] = b10 * a02 + b11 * a12 + b12 * a22;
|
||
|
|
||
|
out.m[6] = b20 * a00 + b21 * a10 + b22 * a20;
|
||
|
out.m[7] = b20 * a01 + b21 * a11 + b22 * a21;
|
||
|
out.m[8] = b20 * a02 + b21 * a12 + b22 * a22;
|
||
|
}
|
||
|
|
||
|
void Mat3::translate(Mat3 &out, const Mat3 &mat, const Vec2 &vec)
|
||
|
{
|
||
|
float a00 = mat.m[0], a01 = mat.m[1], a02 = mat.m[2];
|
||
|
float a10 = mat.m[3], a11 = mat.m[4], a12 = mat.m[5];
|
||
|
float a20 = mat.m[6], a21 = mat.m[7], a22 = mat.m[8];
|
||
|
float x = vec.x, y = vec.y;
|
||
|
|
||
|
out.m[0] = a00;
|
||
|
out.m[1] = a01;
|
||
|
out.m[2] = a02;
|
||
|
|
||
|
out.m[3] = a10;
|
||
|
out.m[4] = a11;
|
||
|
out.m[5] = a12;
|
||
|
|
||
|
out.m[6] = x * a00 + y * a10 + a20;
|
||
|
out.m[7] = x * a01 + y * a11 + a21;
|
||
|
out.m[8] = x * a02 + y * a12 + a22;
|
||
|
}
|
||
|
|
||
|
void Mat3::rotate(Mat3 &out, const Mat3 &mat, float rad)
|
||
|
{
|
||
|
float a00 = mat.m[0], a01 = mat.m[1], a02 = mat.m[2];
|
||
|
float a10 = mat.m[3], a11 = mat.m[4], a12 = mat.m[5];
|
||
|
float a20 = mat.m[6], a21 = mat.m[7], a22 = mat.m[8];
|
||
|
|
||
|
float s = sin(rad);
|
||
|
float c = cos(rad);
|
||
|
|
||
|
out.m[0] = c * a00 + s * a10;
|
||
|
out.m[1] = c * a01 + s * a11;
|
||
|
out.m[2] = c * a02 + s * a12;
|
||
|
|
||
|
out.m[3] = c * a10 - s * a00;
|
||
|
out.m[4] = c * a11 - s * a01;
|
||
|
out.m[5] = c * a12 - s * a02;
|
||
|
|
||
|
out.m[6] = a20;
|
||
|
out.m[7] = a21;
|
||
|
out.m[8] = a22;
|
||
|
}
|
||
|
|
||
|
void Mat3::scale(Mat3 &out, const Mat3 &mat, const Vec2 &vec)
|
||
|
{
|
||
|
float x = vec.x, y = vec.y;
|
||
|
|
||
|
out.m[0] = x * mat.m[0];
|
||
|
out.m[1] = x * mat.m[1];
|
||
|
out.m[2] = x * mat.m[2];
|
||
|
|
||
|
out.m[3] = y * mat.m[3];
|
||
|
out.m[4] = y * mat.m[4];
|
||
|
out.m[5] = y * mat.m[5];
|
||
|
|
||
|
out.m[6] = mat.m[6];
|
||
|
out.m[7] = mat.m[7];
|
||
|
out.m[8] = mat.m[8];
|
||
|
}
|
||
|
|
||
|
void Mat3::fromMat4(Mat3 &out, const Mat4 &mat)
|
||
|
{
|
||
|
out.m[0] = mat.m[0];
|
||
|
out.m[1] = mat.m[1];
|
||
|
out.m[2] = mat.m[2];
|
||
|
out.m[3] = mat.m[4];
|
||
|
out.m[4] = mat.m[5];
|
||
|
out.m[5] = mat.m[6];
|
||
|
out.m[6] = mat.m[8];
|
||
|
out.m[7] = mat.m[9];
|
||
|
out.m[8] = mat.m[10];
|
||
|
}
|
||
|
|
||
|
void Mat3::fromTranslation(Mat3 &out, const Vec2 &vec)
|
||
|
{
|
||
|
out.m[0] = 1;
|
||
|
out.m[1] = 0;
|
||
|
out.m[2] = 0;
|
||
|
out.m[3] = 0;
|
||
|
out.m[4] = 1;
|
||
|
out.m[5] = 0;
|
||
|
out.m[6] = vec.x;
|
||
|
out.m[7] = vec.y;
|
||
|
out.m[8] = 1;
|
||
|
}
|
||
|
|
||
|
void Mat3::fromRotation(Mat3 &out, float rad)
|
||
|
{
|
||
|
float s = sin(rad);
|
||
|
float c = cos(rad);
|
||
|
|
||
|
out.m[0] = c;
|
||
|
out.m[1] = s;
|
||
|
out.m[2] = 0;
|
||
|
|
||
|
out.m[3] = -s;
|
||
|
out.m[4] = c;
|
||
|
out.m[5] = 0;
|
||
|
|
||
|
out.m[6] = 0;
|
||
|
out.m[7] = 0;
|
||
|
out.m[8] = 1;
|
||
|
}
|
||
|
|
||
|
void Mat3::fromScaling(Mat3 &out, const Vec2 &vec)
|
||
|
{
|
||
|
out.m[0] = vec.x;
|
||
|
out.m[1] = 0;
|
||
|
out.m[2] = 0;
|
||
|
|
||
|
out.m[3] = 0;
|
||
|
out.m[4] = vec.y;
|
||
|
out.m[5] = 0;
|
||
|
|
||
|
out.m[6] = 0;
|
||
|
out.m[7] = 0;
|
||
|
out.m[8] = 1;
|
||
|
}
|
||
|
|
||
|
void Mat3::fromQuat(Mat3 &out, const Quaternion &quat)
|
||
|
{
|
||
|
float x = quat.x, y = quat.y, z = quat.z, w = quat.w;
|
||
|
float x2 = x + x;
|
||
|
float y2 = y + y;
|
||
|
float z2 = z + z;
|
||
|
|
||
|
float xx = x * x2;
|
||
|
float yx = y * x2;
|
||
|
float yy = y * y2;
|
||
|
float zx = z * x2;
|
||
|
float zy = z * y2;
|
||
|
float zz = z * z2;
|
||
|
float wx = w * x2;
|
||
|
float wy = w * y2;
|
||
|
float wz = w * z2;
|
||
|
|
||
|
out.m[0] = 1 - yy - zz;
|
||
|
out.m[3] = yx - wz;
|
||
|
out.m[6] = zx + wy;
|
||
|
|
||
|
out.m[1] = yx + wz;
|
||
|
out.m[4] = 1 - xx - zz;
|
||
|
out.m[7] = zy - wx;
|
||
|
|
||
|
out.m[2] = zx - wy;
|
||
|
out.m[5] = zy + wx;
|
||
|
out.m[8] = 1 - xx - yy;
|
||
|
}
|
||
|
|
||
|
void Mat3::add(Mat3 &out, const Mat3 &a, const Mat3 &b)
|
||
|
{
|
||
|
out.m[0] = a.m[0] + b.m[0];
|
||
|
out.m[1] = a.m[1] + b.m[1];
|
||
|
out.m[2] = a.m[2] + b.m[2];
|
||
|
out.m[3] = a.m[3] + b.m[3];
|
||
|
out.m[4] = a.m[4] + b.m[4];
|
||
|
out.m[5] = a.m[5] + b.m[5];
|
||
|
out.m[6] = a.m[6] + b.m[6];
|
||
|
out.m[7] = a.m[7] + b.m[7];
|
||
|
out.m[8] = a.m[8] + b.m[8];
|
||
|
}
|
||
|
|
||
|
void Mat3::subtract(Mat3 &out, const Mat3 &a, const Mat3 &b)
|
||
|
{
|
||
|
out.m[0] = a.m[0] - b.m[0];
|
||
|
out.m[1] = a.m[1] - b.m[1];
|
||
|
out.m[2] = a.m[2] - b.m[2];
|
||
|
out.m[3] = a.m[3] - b.m[3];
|
||
|
out.m[4] = a.m[4] - b.m[4];
|
||
|
out.m[5] = a.m[5] - b.m[5];
|
||
|
out.m[6] = a.m[6] - b.m[6];
|
||
|
out.m[7] = a.m[7] - b.m[7];
|
||
|
out.m[8] = a.m[8] - b.m[8];
|
||
|
}
|
||
|
|
||
|
const Mat3 Mat3::IDENTITY = Mat3(
|
||
|
1.0f, 0.0f, 0.0f,
|
||
|
0.0f, 1.0f, 0.0f,
|
||
|
0.0f, 0.0f, 1.0f);
|
||
|
|
||
|
const Mat3 Mat3::ZERO = Mat3(
|
||
|
0, 0, 0,
|
||
|
0, 0, 0,
|
||
|
0, 0, 0);
|
||
|
|
||
|
NS_CC_MATH_END
|
||
|
|