cocos-enhance-kit/engine/cocos2d/particle/particle-simulator.js

461 lines
16 KiB
JavaScript
Raw Normal View History

2022-06-25 00:23:03 +08:00
/****************************************************************************
Copyright (c) 2018 Xiamen Yaji Software Co., Ltd.
https://www.cocos.com/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated engine source code (the "Software"), a limited,
worldwide, royalty-free, non-assignable, revocable and non-exclusive license
to use Cocos Creator solely to develop games on your target platforms. You shall
not use Cocos Creator software for developing other software or tools that's
used for developing games. You are not granted to publish, distribute,
sublicense, and/or sell copies of Cocos Creator.
The software or tools in this License Agreement are licensed, not sold.
Xiamen Yaji Software Co., Ltd. reserves all rights not expressly granted to you.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
const js = require('../core/platform/js');
const misc = require('../core/utils/misc');
const ZERO_VEC2 = cc.v2(0, 0);
let _pos = cc.v2();
let _tpa = cc.v2();
let _tpb = cc.v2();
let _tpc = cc.v2();
let Particle = function () {
this.pos = cc.v2(0, 0);
this.startPos = cc.v2(0, 0);
this.color = cc.color(0, 0, 0, 255);
this.deltaColor = {r: 0, g: 0, b: 0, a: 255};
this.preciseColor = {r: 0, g: 0, b: 0, a: 255};
this.size = 0;
this.deltaSize = 0;
this.rotation = 0;
this.deltaRotation = 0;
this.timeToLive = 0;
this.drawPos = cc.v2(0, 0);
this.aspectRatio = 1;
// Mode A
this.dir = cc.v2(0, 0);
this.radialAccel = 0;
this.tangentialAccel = 0;
// Mode B
this.angle = 0;
this.degreesPerSecond = 0;
this.radius = 0;
this.deltaRadius = 0;
}
let pool = new js.Pool(function (par) {
par.pos.set(ZERO_VEC2);
par.startPos.set(ZERO_VEC2);
par.color._val = 0xFF000000;
par.deltaColor.r = par.deltaColor.g = par.deltaColor.b = 0;
par.deltaColor.a = 255;
par.size = 0;
par.deltaSize = 0;
par.rotation = 0;
par.deltaRotation = 0;
par.timeToLive = 0;
par.drawPos.set(ZERO_VEC2);
par.aspectRatio = 1;
// Mode A
par.dir.set(ZERO_VEC2);
par.radialAccel = 0;
par.tangentialAccel = 0;
// Mode B
par.angle = 0;
par.degreesPerSecond = 0;
par.radius = 0;
par.deltaRadius = 0;
}, 1024);
pool.get = function () {
return this._get() || new Particle();
}
let Simulator = function (system) {
this.sys = system;
this.particles = [];
this.active = false;
this.readyToPlay = true;
this.finished = false;
this.elapsed = 0;
this.emitCounter = 0;
this._uvFilled = 0;
this._worldRotation = 0;
}
Simulator.prototype.stop = function () {
this.active = false;
this.readyToPlay = false;
this.elapsed = this.sys.duration;
this.emitCounter = 0;
}
Simulator.prototype.reset = function () {
this.active = true;
this.readyToPlay = true;
this.elapsed = 0;
this.emitCounter = 0;
this.finished = false;
let particles = this.particles;
for (let id = 0; id < particles.length; ++id)
pool.put(particles[id]);
particles.length = 0;
let assembler = this.sys._assembler;
if (assembler && assembler._ia)
assembler._ia._count = 0;
}
Simulator.prototype.emitParticle = function (pos) {
let psys = this.sys;
let clampf = misc.clampf;
let particle = pool.get();
this.particles.push(particle);
// Init particle
// timeToLive
// no negative life. prevent division by 0
particle.timeToLive = psys.life + psys.lifeVar * (Math.random() - 0.5) * 2;
let timeToLive = particle.timeToLive = Math.max(0, particle.timeToLive);
// position
particle.pos.x = psys.sourcePos.x + psys.posVar.x * (Math.random() - 0.5) * 2;
particle.pos.y = psys.sourcePos.y + psys.posVar.y * (Math.random() - 0.5) * 2;
// Color
let sr, sg, sb, sa;
let startColor = psys._startColor, startColorVar = psys._startColorVar;
let endColor = psys._endColor, endColorVar = psys._endColorVar;
particle.color.r = sr = clampf(startColor.r + startColorVar.r * (Math.random() - 0.5) * 2, 0, 255);
particle.color.g = sg = clampf(startColor.g + startColorVar.g * (Math.random() - 0.5) * 2, 0, 255);
particle.color.b = sb = clampf(startColor.b + startColorVar.b * (Math.random() - 0.5) * 2, 0, 255);
particle.color.a = sa = clampf(startColor.a + startColorVar.a * (Math.random() - 0.5) * 2, 0, 255);
let color = particle.color;
let preciseColor = particle.preciseColor;
preciseColor.r = color.r;
preciseColor.g = color.g;
preciseColor.b = color.b;
preciseColor.a = color.a;
particle.deltaColor.r = (clampf(endColor.r + endColorVar.r * (Math.random() - 0.5) * 2, 0, 255) - sr) / timeToLive;
particle.deltaColor.g = (clampf(endColor.g + endColorVar.g * (Math.random() - 0.5) * 2, 0, 255) - sg) / timeToLive;
particle.deltaColor.b = (clampf(endColor.b + endColorVar.b * (Math.random() - 0.5) * 2, 0, 255) - sb) / timeToLive;
particle.deltaColor.a = (clampf(endColor.a + endColorVar.a * (Math.random() - 0.5) * 2, 0, 255) - sa) / timeToLive;
// size
let startS = psys.startSize + psys.startSizeVar * (Math.random() - 0.5) * 2;
startS = Math.max(0, startS); // No negative value
particle.size = startS;
if (psys.endSize === cc.ParticleSystem.START_SIZE_EQUAL_TO_END_SIZE) {
particle.deltaSize = 0;
} else {
var endS = psys.endSize + psys.endSizeVar * (Math.random() - 0.5) * 2;
endS = Math.max(0, endS); // No negative values
particle.deltaSize = (endS - startS) / timeToLive;
}
// rotation
var startA = psys.startSpin + psys.startSpinVar * (Math.random() - 0.5) * 2;
var endA = psys.endSpin + psys.endSpinVar * (Math.random() - 0.5) * 2;
particle.rotation = startA;
particle.deltaRotation = (endA - startA) / timeToLive;
// position
particle.startPos.x = pos.x;
particle.startPos.y = pos.y;
// aspect ratio
particle.aspectRatio = psys._aspectRatio || 1;
// direction
let a = misc.degreesToRadians( psys.angle + this._worldRotation + psys.angleVar * (Math.random() - 0.5) * 2);
// Mode Gravity: A
if (psys.emitterMode === cc.ParticleSystem.EmitterMode.GRAVITY) {
let s = psys.speed + psys.speedVar * (Math.random() - 0.5) * 2;
// direction
particle.dir.x = Math.cos(a);
particle.dir.y = Math.sin(a);
particle.dir.mulSelf(s);
// radial accel
particle.radialAccel = psys.radialAccel + psys.radialAccelVar * (Math.random() - 0.5) * 2;
// tangential accel
particle.tangentialAccel = psys.tangentialAccel + psys.tangentialAccelVar * (Math.random() - 0.5) * 2;
// rotation is dir
if (psys.rotationIsDir) {
particle.rotation = -misc.radiansToDegrees(Math.atan2(particle.dir.y, particle.dir.x));
}
}
// Mode Radius: B
else {
// Set the default diameter of the particle from the source position
var startRadius = psys.startRadius + psys.startRadiusVar * (Math.random() - 0.5) * 2;
var endRadius = psys.endRadius + psys.endRadiusVar * (Math.random() - 0.5) * 2;
particle.radius = startRadius;
particle.deltaRadius = (psys.endRadius === cc.ParticleSystem.START_RADIUS_EQUAL_TO_END_RADIUS) ? 0 : (endRadius - startRadius) / timeToLive;
particle.angle = a;
particle.degreesPerSecond = misc.degreesToRadians(psys.rotatePerS + psys.rotatePerSVar * (Math.random() - 0.5) * 2);
}
};
// In the Free mode to get emit real rotation in the world coordinate.
function getWorldRotation (node) {
let rotation = 0;
let tempNode = node;
while (tempNode) {
rotation += tempNode.angle;
tempNode = tempNode.parent;
}
return rotation;
}
Simulator.prototype.updateUVs = function (force) {
let assembler = this.sys._assembler;
if (!assembler) {
return;
}
let buffer = assembler.getBuffer();
if (buffer && this.sys._renderSpriteFrame) {
const FLOAT_PER_PARTICLE = 4 * assembler._vfmt._bytes / 4;
let vbuf = buffer._vData;
let uv = this.sys._renderSpriteFrame.uv;
let start = force ? 0 : this._uvFilled;
let particleCount = this.particles.length;
for (let i = start; i < particleCount; i++) {
let offset = i * FLOAT_PER_PARTICLE;
vbuf[offset+2] = uv[0];
vbuf[offset+3] = uv[1];
vbuf[offset+7] = uv[2];
vbuf[offset+8] = uv[3];
vbuf[offset+12] = uv[4];
vbuf[offset+13] = uv[5];
vbuf[offset+17] = uv[6];
vbuf[offset+18] = uv[7];
}
this._uvFilled = particleCount;
}
}
Simulator.prototype.updateParticleBuffer = function (particle, pos, buffer, offset) {
let vbuf = buffer._vData;
let uintbuf = buffer._uintVData;
let x = pos.x, y = pos.y;
let width = particle.size;
let height = width;
let aspectRatio = particle.aspectRatio;
aspectRatio > 1 ? (height = width / aspectRatio) : (width = height * aspectRatio);
let halfWidth = width / 2;
let halfHeight = height / 2;
// pos
if (particle.rotation) {
let x1 = -halfWidth, y1 = -halfHeight;
let x2 = halfWidth, y2 = halfHeight;
let rad = -misc.degreesToRadians(particle.rotation);
let cr = Math.cos(rad), sr = Math.sin(rad);
// bl
vbuf[offset] = x1 * cr - y1 * sr + x;
vbuf[offset+1] = x1 * sr + y1 * cr + y;
// br
vbuf[offset+5] = x2 * cr - y1 * sr + x;
vbuf[offset+6] = x2 * sr + y1 * cr + y;
// tl
vbuf[offset+10] = x1 * cr - y2 * sr + x;
vbuf[offset+11] = x1 * sr + y2 * cr + y;
// tr
vbuf[offset+15] = x2 * cr - y2 * sr + x;
vbuf[offset+16] = x2 * sr + y2 * cr + y;
}
else {
// bl
vbuf[offset] = x - halfWidth;
vbuf[offset+1] = y - halfHeight;
// br
vbuf[offset+5] = x + halfWidth;
vbuf[offset+6] = y - halfHeight;
// tl
vbuf[offset+10] = x - halfWidth;
vbuf[offset+11] = y + halfHeight;
// tr
vbuf[offset+15] = x + halfWidth;
vbuf[offset+16] = y + halfHeight;
}
// color
uintbuf[offset+4] = particle.color._val;
uintbuf[offset+9] = particle.color._val;
uintbuf[offset+14] = particle.color._val;
uintbuf[offset+19] = particle.color._val;
};
Simulator.prototype.step = function (dt) {
dt = dt > cc.director._maxParticleDeltaTime ? cc.director._maxParticleDeltaTime : dt;
let psys = this.sys;
let node = psys.node;
let particles = this.particles;
const FLOAT_PER_PARTICLE = 4 * this.sys._assembler._vfmt._bytes / 4;
const PositionType = cc.ParticleSystem.PositionType;
// Calculate pos
node._updateWorldMatrix();
if (psys.positionType === PositionType.FREE) {
this._worldRotation = getWorldRotation(node);
let m = node._worldMatrix.m;
_pos.x = m[12];
_pos.y = m[13];
} else if (psys.positionType === PositionType.RELATIVE) {
this._worldRotation = node.angle;
_pos.x = node.x;
_pos.y = node.y;
} else {
this._worldRotation = 0;
}
// Emission
if (this.active && psys.emissionRate) {
var rate = 1.0 / psys.emissionRate;
//issue #1201, prevent bursts of particles, due to too high emitCounter
if (particles.length < psys.totalParticles)
this.emitCounter += dt;
while ((particles.length < psys.totalParticles) && (this.emitCounter > rate)) {
this.emitParticle(_pos);
this.emitCounter -= rate;
}
this.elapsed += dt;
if (psys.duration !== -1 && psys.duration < this.elapsed) {
psys.stopSystem();
}
}
// Request buffer for particles
let buffer = psys._assembler.getBuffer();
let particleCount = particles.length;
buffer.reset();
buffer.request(particleCount * 4, particleCount * 6);
// Fill up uvs
if (particleCount > this._uvFilled) {
this.updateUVs();
}
// Used to reduce memory allocation / creation within the loop
let particleIdx = 0;
while (particleIdx < particles.length) {
// Reset temporary vectors
_tpa.x = _tpa.y = _tpb.x = _tpb.y = _tpc.x = _tpc.y = 0;
let particle = particles[particleIdx];
// life
particle.timeToLive -= dt;
if (particle.timeToLive > 0) {
// Mode A: gravity, direction, tangential accel & radial accel
if (psys.emitterMode === cc.ParticleSystem.EmitterMode.GRAVITY) {
let tmp = _tpc, radial = _tpa, tangential = _tpb;
// radial acceleration
if (particle.pos.x || particle.pos.y) {
radial.set(particle.pos);
radial.normalizeSelf();
}
tangential.set(radial);
radial.mulSelf(particle.radialAccel);
// tangential acceleration
let newy = tangential.x;
tangential.x = -tangential.y;
tangential.y = newy;
tangential.mulSelf(particle.tangentialAccel);
tmp.set(radial);
tmp.addSelf(tangential);
tmp.addSelf(psys.gravity);
tmp.mulSelf(dt);
particle.dir.addSelf(tmp);
tmp.set(particle.dir);
tmp.mulSelf(dt);
particle.pos.addSelf(tmp);
}
// Mode B: radius movement
else {
// Update the angle and radius of the particle.
particle.angle += particle.degreesPerSecond * dt;
particle.radius += particle.deltaRadius * dt;
particle.pos.x = -Math.cos(particle.angle) * particle.radius;
particle.pos.y = -Math.sin(particle.angle) * particle.radius;
}
// color
let preciseColor = particle.preciseColor;
let deltaColor = particle.deltaColor;
preciseColor.r += deltaColor.r * dt;
preciseColor.g += deltaColor.g * dt;
preciseColor.b += deltaColor.b * dt;
preciseColor.a += deltaColor.a * dt;
let color = particle.color;
color.r = preciseColor.r;
color.g = preciseColor.g;
color.b = preciseColor.b;
color.a = preciseColor.a;
// size
particle.size += particle.deltaSize * dt;
if (particle.size < 0) {
particle.size = 0;
}
// angle
particle.rotation += particle.deltaRotation * dt;
// update values in quad buffer
let newPos = _tpa;
newPos.set(particle.pos);
if (psys.positionType !== PositionType.GROUPED) {
newPos.addSelf(particle.startPos);
}
let offset = FLOAT_PER_PARTICLE * particleIdx;
this.updateParticleBuffer(particle, newPos, buffer, offset);
// update particle counter
++particleIdx;
} else {
// life < 0
let deadParticle = particles[particleIdx];
if (particleIdx !== particles.length - 1) {
particles[particleIdx] = particles[particles.length - 1];
}
pool.put(deadParticle);
particles.length--;
}
}
psys._assembler._ia._count = particles.length * 6;
if (particles.length > 0) {
buffer.uploadData();
}
else if (!this.active && !this.readyToPlay) {
this.finished = true;
psys._finishedSimulation();
}
}
module.exports = Simulator;