mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-27 21:31:02 +00:00
214 lines
6.8 KiB
JavaScript
214 lines
6.8 KiB
JavaScript
|
/****************************************************************************
|
||
|
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
|
||
|
|
||
|
https://www.cocos.com/
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated engine source code (the "Software"), a limited,
|
||
|
worldwide, royalty-free, non-assignable, revocable and non-exclusive license
|
||
|
to use Cocos Creator solely to develop games on your target platforms. You shall
|
||
|
not use Cocos Creator software for developing other software or tools that's
|
||
|
used for developing games. You are not granted to publish, distribute,
|
||
|
sublicense, and/or sell copies of Cocos Creator.
|
||
|
|
||
|
The software or tools in this License Agreement are licensed, not sold.
|
||
|
Xiamen Yaji Software Co., Ltd. reserves all rights not expressly granted to you.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE.
|
||
|
****************************************************************************/
|
||
|
|
||
|
//var bezier = (function () {
|
||
|
// function B1 (t) { return (t * t * t); }
|
||
|
// function B2 (t) { return (3 * t * t * (1 - t)); }
|
||
|
// function B3 (t) { return (3 * t * (1 - t) * (1 - t)); }
|
||
|
// function B4 (t) { return ((1 - t) * (1 - t) * (1 - t)); }
|
||
|
// function bezier (C1, C2, C3, C4, t) {
|
||
|
// return C1 * B1(t) + C2 * B2(t) + C3 * B3(t) + C4 * B4(t);
|
||
|
// }
|
||
|
//
|
||
|
// //function bezier (C1, C2, C3, C4, t, out) {
|
||
|
// // out.x = C1.x * B1(t) + C2.x * B2(t) + C3.x * B3(t) + C4.x * B4(t);
|
||
|
// // out.y = C1.y * B1(t) + C2.y * B2(t) + C3.y * B3(t) + C4.y * B4(t);
|
||
|
// //}
|
||
|
//
|
||
|
// return bezier;
|
||
|
//})();
|
||
|
function bezier (C1, C2, C3, C4, t) {
|
||
|
var t1 = 1 - t;
|
||
|
return t1 * (t1 * (C1 + (C2 * 3 - C1) * t) + C3 * 3 * t * t) + C4 * t * t * t;
|
||
|
}
|
||
|
//function bezier (c0, c1, c2, c3, t) {
|
||
|
// var cy = 3.0 * (c1);
|
||
|
// var by = 3.0 * (c3 - c1) - cy;
|
||
|
// var ay = 1 - cy - by;
|
||
|
// return (ay * t * t * t) + (by * t * t) + (cy * t);
|
||
|
//}
|
||
|
|
||
|
//var sin = Math.sin;
|
||
|
var cos = Math.cos,
|
||
|
acos = Math.acos,
|
||
|
max = Math.max,
|
||
|
//atan2 = Math.atan2,
|
||
|
pi = Math.PI,
|
||
|
tau = 2 * pi,
|
||
|
sqrt = Math.sqrt;
|
||
|
|
||
|
function crt (v) {
|
||
|
if (v < 0) {
|
||
|
return -Math.pow(-v, 1 / 3);
|
||
|
}
|
||
|
else {
|
||
|
return Math.pow(v, 1 / 3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//function align (curve, line) {
|
||
|
// var tx = line.p1.x,
|
||
|
// ty = line.p1.y,
|
||
|
// a = -atan2(line.p2.y-ty, line.p2.x-tx);
|
||
|
// curve = [{x:0, y:1}, {x: curve[0], y: 1-curve[1]}, {x: curve[2], y: 1-curve[3]}, {x:1, y:0}];
|
||
|
// return curve.map(function(v) {
|
||
|
// return {
|
||
|
// x: (v.x-tx)*cos(a) - (v.y-ty)*sin(a),
|
||
|
// y: (v.x-tx)*sin(a) + (v.y-ty)*cos(a)
|
||
|
// };
|
||
|
// });
|
||
|
//}
|
||
|
|
||
|
// Modified from http://jsbin.com/yibipofeqi/1/edit, optimized for animations.
|
||
|
// The origin Cardano's algorithm is based on http://www.trans4mind.com/personal_development/mathematics/polynomials/cubicAlgebra.htm
|
||
|
function cardano (curve, x) {
|
||
|
// align curve with the intersecting line:
|
||
|
//var line = {p1: {x: x, y: 0}, p2: {x: x, y: 1}};
|
||
|
//var aligned = align(curve, line);
|
||
|
//// and rewrite from [a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3] form
|
||
|
// pa = aligned[0].y,
|
||
|
// pb = aligned[1].y,
|
||
|
// pc = aligned[2].y,
|
||
|
// pd = aligned[3].y;
|
||
|
////// curve = [{x:0, y:1}, {x: curve[0], y: 1-curve[1]}, {x: curve[2], y: 1-curve[3]}, {x:1, y:0}];
|
||
|
var pa = x - 0;
|
||
|
var pb = x - curve[0];
|
||
|
var pc = x - curve[2];
|
||
|
var pd = x - 1;
|
||
|
|
||
|
// to [t^3 + at^2 + bt + c] form:
|
||
|
var pa3 = pa * 3;
|
||
|
var pb3 = pb * 3;
|
||
|
var pc3 = pc * 3;
|
||
|
var d = (-pa + pb3 - pc3 + pd),
|
||
|
rd = 1 / d,
|
||
|
r3 = 1 / 3,
|
||
|
a = (pa3 - 6 * pb + pc3) * rd,
|
||
|
a3 = a * r3,
|
||
|
b = (-pa3 + pb3) * rd,
|
||
|
c = pa * rd,
|
||
|
// then, determine p and q:
|
||
|
p = (3 * b - a * a) * r3,
|
||
|
p3 = p * r3,
|
||
|
q = (2 * a * a * a - 9 * a * b + 27 * c) / 27,
|
||
|
q2 = q / 2,
|
||
|
// and determine the discriminant:
|
||
|
discriminant = q2 * q2 + p3 * p3 * p3,
|
||
|
// and some reserved variables
|
||
|
u1, v1, x1, x2, x3;
|
||
|
|
||
|
// If the discriminant is negative, use polar coordinates
|
||
|
// to get around square roots of negative numbers
|
||
|
if (discriminant < 0) {
|
||
|
var mp3 = -p * r3,
|
||
|
mp33 = mp3 * mp3 * mp3,
|
||
|
r = sqrt(mp33),
|
||
|
// compute cosphi corrected for IEEE float rounding:
|
||
|
t = -q / (2 * r),
|
||
|
cosphi = t < -1 ? -1 : t > 1 ? 1 : t,
|
||
|
phi = acos(cosphi),
|
||
|
crtr = crt(r),
|
||
|
t1 = 2 * crtr;
|
||
|
x1 = t1 * cos(phi * r3) - a3;
|
||
|
x2 = t1 * cos((phi + tau) * r3) - a3;
|
||
|
x3 = t1 * cos((phi + 2 * tau) * r3) - a3;
|
||
|
|
||
|
// choose best percentage
|
||
|
if (0 <= x1 && x1 <= 1) {
|
||
|
if (0 <= x2 && x2 <= 1) {
|
||
|
if (0 <= x3 && x3 <= 1) {
|
||
|
return max(x1, x2, x3);
|
||
|
}
|
||
|
else {
|
||
|
return max(x1, x2);
|
||
|
}
|
||
|
}
|
||
|
else if (0 <= x3 && x3 <= 1) {
|
||
|
return max(x1, x3);
|
||
|
}
|
||
|
else {
|
||
|
return x1;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (0 <= x2 && x2 <= 1) {
|
||
|
if (0 <= x3 && x3 <= 1) {
|
||
|
return max(x2, x3);
|
||
|
}
|
||
|
else {
|
||
|
return x2;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
return x3;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (discriminant === 0) {
|
||
|
u1 = q2 < 0 ? crt(-q2) : -crt(q2);
|
||
|
x1 = 2 * u1 - a3;
|
||
|
x2 = -u1 - a3;
|
||
|
|
||
|
// choose best percentage
|
||
|
if (0 <= x1 && x1 <= 1) {
|
||
|
if (0 <= x2 && x2 <= 1) {
|
||
|
return max(x1, x2);
|
||
|
}
|
||
|
else {
|
||
|
return x1;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
return x2;
|
||
|
}
|
||
|
}
|
||
|
// one real root, and two imaginary roots
|
||
|
else {
|
||
|
var sd = sqrt(discriminant);
|
||
|
u1 = crt(-q2 + sd);
|
||
|
v1 = crt(q2 + sd);
|
||
|
x1 = u1 - v1 - a3;
|
||
|
return x1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function bezierByTime (controlPoints, x) {
|
||
|
var percent = cardano(controlPoints, x); // t
|
||
|
var p1y = controlPoints[1]; // b
|
||
|
var p2y = controlPoints[3]; // c
|
||
|
// return bezier(0, p1y, p2y, 1, percent);
|
||
|
return ((1 - percent) * (p1y + (p2y - p1y) * percent) * 3 + percent * percent) * percent;
|
||
|
}
|
||
|
|
||
|
if (CC_TEST) {
|
||
|
cc._Test.bezier = bezier;
|
||
|
cc._Test.bezierByTime = bezierByTime;
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
bezier: bezier,
|
||
|
bezierByTime: bezierByTime
|
||
|
};
|