mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-26 21:01:02 +00:00
323 lines
7.4 KiB
C
323 lines
7.4 KiB
C
|
/*
|
||
|
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
|
||
|
* http://code.google.com/p/poly2tri/
|
||
|
*
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without modification,
|
||
|
* are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
* * Neither the name of Poly2Tri nor the names of its contributors may be
|
||
|
* used to endorse or promote products derived from this software without specific
|
||
|
* prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
// Include guard
|
||
|
#ifndef SHAPES_H
|
||
|
#define SHAPES_H
|
||
|
|
||
|
#include <vector>
|
||
|
#include <cstddef>
|
||
|
#include <assert.h>
|
||
|
#include <cmath>
|
||
|
|
||
|
namespace p2t {
|
||
|
|
||
|
struct Edge;
|
||
|
|
||
|
struct Point {
|
||
|
|
||
|
double x, y;
|
||
|
|
||
|
/// Default constructor does nothing (for performance).
|
||
|
Point()
|
||
|
{
|
||
|
x = 0.0;
|
||
|
y = 0.0;
|
||
|
}
|
||
|
|
||
|
/// The edges this point constitutes an upper ending point
|
||
|
std::vector<Edge*> edge_list;
|
||
|
|
||
|
/// Construct using coordinates.
|
||
|
Point(double x, double y) : x(x), y(y) {}
|
||
|
|
||
|
/// Set this point to all zeros.
|
||
|
void set_zero()
|
||
|
{
|
||
|
x = 0.0;
|
||
|
y = 0.0;
|
||
|
}
|
||
|
|
||
|
/// Set this point to some specified coordinates.
|
||
|
void set(double x_, double y_)
|
||
|
{
|
||
|
x = x_;
|
||
|
y = y_;
|
||
|
}
|
||
|
|
||
|
/// Negate this point.
|
||
|
Point operator -() const
|
||
|
{
|
||
|
Point v;
|
||
|
v.set(-x, -y);
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/// Add a point to this point.
|
||
|
void operator +=(const Point& v)
|
||
|
{
|
||
|
x += v.x;
|
||
|
y += v.y;
|
||
|
}
|
||
|
|
||
|
/// Subtract a point from this point.
|
||
|
void operator -=(const Point& v)
|
||
|
{
|
||
|
x -= v.x;
|
||
|
y -= v.y;
|
||
|
}
|
||
|
|
||
|
/// Multiply this point by a scalar.
|
||
|
void operator *=(double a)
|
||
|
{
|
||
|
x *= a;
|
||
|
y *= a;
|
||
|
}
|
||
|
|
||
|
/// Get the length of this point (the norm).
|
||
|
double Length() const
|
||
|
{
|
||
|
return sqrt(x * x + y * y);
|
||
|
}
|
||
|
|
||
|
/// Convert this point into a unit point. Returns the Length.
|
||
|
double Normalize()
|
||
|
{
|
||
|
const double len = Length();
|
||
|
x /= len;
|
||
|
y /= len;
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
// Represents a simple polygon's edge
|
||
|
struct Edge {
|
||
|
|
||
|
Point* p, *q;
|
||
|
|
||
|
/// Constructor
|
||
|
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
|
||
|
{
|
||
|
if (p1.y > p2.y) {
|
||
|
q = &p1;
|
||
|
p = &p2;
|
||
|
} else if (p1.y == p2.y) {
|
||
|
if (p1.x > p2.x) {
|
||
|
q = &p1;
|
||
|
p = &p2;
|
||
|
} else if (p1.x == p2.x) {
|
||
|
// Repeat points
|
||
|
assert(false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
q->edge_list.push_back(this);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Triangle-based data structures are know to have better performance than quad-edge structures
|
||
|
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
|
||
|
// "Triangulations in CGAL"
|
||
|
class Triangle {
|
||
|
public:
|
||
|
|
||
|
/// Constructor
|
||
|
Triangle(Point& a, Point& b, Point& c);
|
||
|
|
||
|
/// Flags to determine if an edge is a Constrained edge
|
||
|
bool constrained_edge[3];
|
||
|
/// Flags to determine if an edge is a Delauney edge
|
||
|
bool delaunay_edge[3];
|
||
|
|
||
|
Point* GetPoint(int index);
|
||
|
Point* PointCW(const Point& point);
|
||
|
Point* PointCCW(const Point& point);
|
||
|
Point* OppositePoint(Triangle& t, const Point& p);
|
||
|
|
||
|
Triangle* GetNeighbor(int index);
|
||
|
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
|
||
|
void MarkNeighbor(Triangle& t);
|
||
|
|
||
|
void MarkConstrainedEdge(int index);
|
||
|
void MarkConstrainedEdge(Edge& edge);
|
||
|
void MarkConstrainedEdge(Point* p, Point* q);
|
||
|
|
||
|
int Index(const Point* p);
|
||
|
int EdgeIndex(const Point* p1, const Point* p2);
|
||
|
|
||
|
Triangle* NeighborCW(const Point& point);
|
||
|
Triangle* NeighborCCW(const Point& point);
|
||
|
bool GetConstrainedEdgeCCW(const Point& p);
|
||
|
bool GetConstrainedEdgeCW(const Point& p);
|
||
|
void SetConstrainedEdgeCCW(const Point& p, bool ce);
|
||
|
void SetConstrainedEdgeCW(const Point& p, bool ce);
|
||
|
bool GetDelunayEdgeCCW(const Point& p);
|
||
|
bool GetDelunayEdgeCW(const Point& p);
|
||
|
void SetDelunayEdgeCCW(const Point& p, bool e);
|
||
|
void SetDelunayEdgeCW(const Point& p, bool e);
|
||
|
|
||
|
bool Contains(const Point* p);
|
||
|
bool Contains(const Edge& e);
|
||
|
bool Contains(const Point* p, const Point* q);
|
||
|
void Legalize(Point& point);
|
||
|
void Legalize(Point& opoint, Point& npoint);
|
||
|
/**
|
||
|
* Clears all references to all other triangles and points
|
||
|
*/
|
||
|
void Clear();
|
||
|
void ClearNeighbor(const Triangle *triangle);
|
||
|
void ClearNeighbors();
|
||
|
void ClearDelunayEdges();
|
||
|
|
||
|
inline bool IsInterior();
|
||
|
inline void IsInterior(bool b);
|
||
|
|
||
|
Triangle& NeighborAcross(const Point& opoint);
|
||
|
|
||
|
void DebugPrint();
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// Triangle points
|
||
|
Point* points_[3];
|
||
|
/// Neighbor list
|
||
|
Triangle* neighbors_[3];
|
||
|
|
||
|
/// Has this triangle been marked as an interior triangle?
|
||
|
bool interior_;
|
||
|
};
|
||
|
|
||
|
inline bool cmp(const Point* a, const Point* b)
|
||
|
{
|
||
|
if (a->y < b->y) {
|
||
|
return true;
|
||
|
} else if (a->y == b->y) {
|
||
|
// Make sure q is point with greater x value
|
||
|
if (a->x < b->x) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// Add two points_ component-wise.
|
||
|
inline Point operator +(const Point& a, const Point& b)
|
||
|
{
|
||
|
return Point(a.x + b.x, a.y + b.y);
|
||
|
}
|
||
|
|
||
|
/// Subtract two points_ component-wise.
|
||
|
inline Point operator -(const Point& a, const Point& b)
|
||
|
{
|
||
|
return Point(a.x - b.x, a.y - b.y);
|
||
|
}
|
||
|
|
||
|
/// Multiply point by scalar
|
||
|
inline Point operator *(double s, const Point& a)
|
||
|
{
|
||
|
return Point(s * a.x, s * a.y);
|
||
|
}
|
||
|
|
||
|
inline bool operator ==(const Point& a, const Point& b)
|
||
|
{
|
||
|
return a.x == b.x && a.y == b.y;
|
||
|
}
|
||
|
|
||
|
inline bool operator !=(const Point& a, const Point& b)
|
||
|
{
|
||
|
return !(a.x == b.x) && !(a.y == b.y);
|
||
|
}
|
||
|
|
||
|
/// Peform the dot product on two vectors.
|
||
|
inline double Dot(const Point& a, const Point& b)
|
||
|
{
|
||
|
return a.x * b.x + a.y * b.y;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on two vectors. In 2D this produces a scalar.
|
||
|
inline double Cross(const Point& a, const Point& b)
|
||
|
{
|
||
|
return a.x * b.y - a.y * b.x;
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a point and a scalar. In 2D this produces
|
||
|
/// a point.
|
||
|
inline Point Cross(const Point& a, double s)
|
||
|
{
|
||
|
return Point(s * a.y, -s * a.x);
|
||
|
}
|
||
|
|
||
|
/// Perform the cross product on a scalar and a point. In 2D this produces
|
||
|
/// a point.
|
||
|
inline Point Cross(double s, const Point& a)
|
||
|
{
|
||
|
return Point(-s * a.y, s * a.x);
|
||
|
}
|
||
|
|
||
|
inline Point* Triangle::GetPoint(int index)
|
||
|
{
|
||
|
return points_[index];
|
||
|
}
|
||
|
|
||
|
inline Triangle* Triangle::GetNeighbor(int index)
|
||
|
{
|
||
|
return neighbors_[index];
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(const Point* p)
|
||
|
{
|
||
|
return p == points_[0] || p == points_[1] || p == points_[2];
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(const Edge& e)
|
||
|
{
|
||
|
return Contains(e.p) && Contains(e.q);
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::Contains(const Point* p, const Point* q)
|
||
|
{
|
||
|
return Contains(p) && Contains(q);
|
||
|
}
|
||
|
|
||
|
inline bool Triangle::IsInterior()
|
||
|
{
|
||
|
return interior_;
|
||
|
}
|
||
|
|
||
|
inline void Triangle::IsInterior(bool b)
|
||
|
{
|
||
|
interior_ = b;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|