mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-14 23:11:06 +00:00
582 lines
19 KiB
C++
582 lines
19 KiB
C++
|
/*
|
|||
|
* edtaa3()
|
|||
|
*
|
|||
|
* Sweep-and-update Euclidean distance transform of an
|
|||
|
* image. Positive pixels are treated as object pixels,
|
|||
|
* zero or negative pixels are treated as background.
|
|||
|
* An attempt is made to treat antialiased edges correctly.
|
|||
|
* The input image must have pixels in the range [0,1],
|
|||
|
* and the antialiased image should be a box-filter
|
|||
|
* sampling of the ideal, crisp edge.
|
|||
|
* If the antialias region is more than 1 pixel wide,
|
|||
|
* the result from this transform will be inaccurate.
|
|||
|
*
|
|||
|
* By Stefan Gustavson (stefan.gustavson@gmail.com).
|
|||
|
*
|
|||
|
* Originally written in 1994, based on a verbal
|
|||
|
* description of Per-Erik Danielsson's SSED8 algorithm
|
|||
|
* as presented in the PhD dissertation of Ingemar
|
|||
|
* Ragnemalm. This is Per-Erik Danielsson's scanline
|
|||
|
* scheme from 1979 - I only implemented it in C.
|
|||
|
*
|
|||
|
* Updated in 2004 to treat border pixels correctly,
|
|||
|
* and cleaned up the code to improve readability.
|
|||
|
*
|
|||
|
* Updated in 2009 to handle anti-aliased edges,
|
|||
|
* as published in the article "Anti-aliased Euclidean
|
|||
|
* distance transform" by Stefan Gustavson and Robin Strand,
|
|||
|
* Pattern Recognition Letters 32 (2011) 252<EFBFBD>C257.
|
|||
|
*
|
|||
|
* Updated in 2011 to avoid a corner case causing an
|
|||
|
* infinite loop for some input data.
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
/*
|
|||
|
Copyright (C) 2009 Stefan Gustavson (stefan.gustavson@gmail.com)
|
|||
|
|
|||
|
This software is distributed under the permissive "MIT License":
|
|||
|
|
|||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|||
|
of this software and associated documentation files (the "Software"), to deal
|
|||
|
in the Software without restriction, including without limitation the rights
|
|||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|||
|
copies of the Software, and to permit persons to whom the Software is
|
|||
|
furnished to do so, subject to the following conditions:
|
|||
|
|
|||
|
The above copyright notice and this permission notice shall be included in
|
|||
|
all copies or substantial portions of the Software.
|
|||
|
|
|||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|||
|
THE SOFTWARE.
|
|||
|
*/
|
|||
|
#ifdef __cplusplus
|
|||
|
extern "C" {
|
|||
|
#endif
|
|||
|
#include <math.h>
|
|||
|
|
|||
|
/*
|
|||
|
* Compute the local gradient at edge pixels using convolution filters.
|
|||
|
* The gradient is computed only at edge pixels. At other places in the
|
|||
|
* image, it is never used, and it's mostly zero anyway.
|
|||
|
*/
|
|||
|
void computegradient(double *img, int w, int h, double *gx, double *gy)
|
|||
|
{
|
|||
|
int i,j,k;
|
|||
|
double glength;
|
|||
|
#define SQRT2 1.4142136
|
|||
|
for(i = 1; i < h-1; i++) { // Avoid edges where the kernels would spill over
|
|||
|
for(j = 1; j < w-1; j++) {
|
|||
|
k = i*w + j;
|
|||
|
if((img[k]>0.0) && (img[k]<1.0)) { // Compute gradient for edge pixels only
|
|||
|
gx[k] = -img[k-w-1] - SQRT2*img[k-1] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+1] + img[k+w+1];
|
|||
|
gy[k] = -img[k-w-1] - SQRT2*img[k-w] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+w] + img[k+w+1];
|
|||
|
glength = gx[k]*gx[k] + gy[k]*gy[k];
|
|||
|
if(glength > 0.0) { // Avoid division by zero
|
|||
|
glength = sqrt(glength);
|
|||
|
gx[k]=gx[k]/glength;
|
|||
|
gy[k]=gy[k]/glength;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
// TODO: Compute reasonable values for gx, gy also around the image edges.
|
|||
|
// (These are zero now, which reduces the accuracy for a 1-pixel wide region
|
|||
|
// around the image edge.) 2x2 kernels would be suitable for this.
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* A somewhat tricky function to approximate the distance to an edge in a
|
|||
|
* certain pixel, with consideration to either the local gradient (gx,gy)
|
|||
|
* or the direction to the pixel (dx,dy) and the pixel greyscale value a.
|
|||
|
* The latter alternative, using (dx,dy), is the metric used by edtaa2().
|
|||
|
* Using a local estimate of the edge gradient (gx,gy) yields much better
|
|||
|
* accuracy at and near edges, and reduces the error even at distant pixels
|
|||
|
* provided that the gradient direction is accurately estimated.
|
|||
|
*/
|
|||
|
double edgedf(double gx, double gy, double a)
|
|||
|
{
|
|||
|
double df, glength, temp, a1;
|
|||
|
|
|||
|
if ((gx == 0) || (gy == 0)) { // Either A) gu or gv are zero, or B) both
|
|||
|
df = 0.5-a; // Linear approximation is A) correct or B) a fair guess
|
|||
|
} else {
|
|||
|
glength = sqrt(gx*gx + gy*gy);
|
|||
|
if(glength>0) {
|
|||
|
gx = gx/glength;
|
|||
|
gy = gy/glength;
|
|||
|
}
|
|||
|
/* Everything is symmetric wrt sign and transposition,
|
|||
|
* so move to first octant (gx>=0, gy>=0, gx>=gy) to
|
|||
|
* avoid handling all possible edge directions.
|
|||
|
*/
|
|||
|
gx = fabs(gx);
|
|||
|
gy = fabs(gy);
|
|||
|
if(gx<gy) {
|
|||
|
temp = gx;
|
|||
|
gx = gy;
|
|||
|
gy = temp;
|
|||
|
}
|
|||
|
a1 = 0.5*gy/gx;
|
|||
|
if (a < a1) { // 0 <= a < a1
|
|||
|
df = 0.5*(gx + gy) - sqrt(2.0*gx*gy*a);
|
|||
|
} else if (a < (1.0-a1)) { // a1 <= a <= 1-a1
|
|||
|
df = (0.5-a)*gx;
|
|||
|
} else { // 1-a1 < a <= 1
|
|||
|
df = -0.5*(gx + gy) + sqrt(2.0*gx*gy*(1.0-a));
|
|||
|
}
|
|||
|
}
|
|||
|
return df;
|
|||
|
}
|
|||
|
|
|||
|
double distaa3(double *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi)
|
|||
|
{
|
|||
|
double di, df, dx, dy, gx, gy, a;
|
|||
|
int closest;
|
|||
|
|
|||
|
closest = c-xc-yc*w; // Index to the edge pixel pointed to from c
|
|||
|
a = img[closest]; // Grayscale value at the edge pixel
|
|||
|
gx = gximg[closest]; // X gradient component at the edge pixel
|
|||
|
gy = gyimg[closest]; // Y gradient component at the edge pixel
|
|||
|
|
|||
|
if(a > 1.0) a = 1.0;
|
|||
|
if(a < 0.0) a = 0.0; // Clip grayscale values outside the range [0,1]
|
|||
|
if(a == 0.0) return 1000000.0; // Not an object pixel, return "very far" ("don't know yet")
|
|||
|
|
|||
|
dx = (double)xi;
|
|||
|
dy = (double)yi;
|
|||
|
di = sqrt(dx*dx + dy*dy); // Length of integer vector, like a traditional EDT
|
|||
|
if(di==0) { // Use local gradient only at edges
|
|||
|
// Estimate based on local gradient only
|
|||
|
df = edgedf(gx, gy, a);
|
|||
|
} else {
|
|||
|
// Estimate gradient based on direction to edge (accurate for large di)
|
|||
|
df = edgedf(dx, dy, a);
|
|||
|
}
|
|||
|
return di + df; // Same metric as edtaa2, except at edges (where di=0)
|
|||
|
}
|
|||
|
|
|||
|
// Shorthand macro: add ubiquitous parameters img, gx, gy and w and call distaa3()
|
|||
|
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))
|
|||
|
|
|||
|
void edtaa3(double *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist)
|
|||
|
{
|
|||
|
int x, y, i, c;
|
|||
|
int offset_u, offset_ur, offset_r, offset_rd,
|
|||
|
offset_d, offset_dl, offset_l, offset_lu;
|
|||
|
double olddist, newdist;
|
|||
|
int cdistx, cdisty, newdistx, newdisty;
|
|||
|
int changed;
|
|||
|
double epsilon = 1e-3; // Safeguard against errors due to limited precision
|
|||
|
|
|||
|
/* Initialize index offsets for the current image width */
|
|||
|
offset_u = -w;
|
|||
|
offset_ur = -w+1;
|
|||
|
offset_r = 1;
|
|||
|
offset_rd = w+1;
|
|||
|
offset_d = w;
|
|||
|
offset_dl = w-1;
|
|||
|
offset_l = -1;
|
|||
|
offset_lu = -w-1;
|
|||
|
|
|||
|
/* Initialize the distance images */
|
|||
|
for(i=0; i<w*h; i++) {
|
|||
|
distx[i] = 0; // At first, all pixels point to
|
|||
|
disty[i] = 0; // themselves as the closest known.
|
|||
|
if(img[i] <= 0.0)
|
|||
|
{
|
|||
|
dist[i]= 1000000.0; // Big value, means "not set yet"
|
|||
|
}
|
|||
|
else if (img[i]<1.0) {
|
|||
|
dist[i] = edgedf(gx[i], gy[i], img[i]); // Gradient-assisted estimate
|
|||
|
}
|
|||
|
else {
|
|||
|
dist[i]= 0.0; // Inside the object
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Perform the transformation */
|
|||
|
do
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
|
|||
|
/* Scan rows, except first row */
|
|||
|
for(y=1; y<h; y++)
|
|||
|
{
|
|||
|
|
|||
|
/* move index to leftmost pixel of current row */
|
|||
|
i = y*w;
|
|||
|
|
|||
|
/* scan right, propagate distances from above & left */
|
|||
|
|
|||
|
/* Leftmost pixel is special, has no left neighbors */
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist > 0) // If non-zero distance or not set yet
|
|||
|
{
|
|||
|
c = i + offset_u; // Index of candidate for testing
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_ur;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
i++;
|
|||
|
|
|||
|
/* Middle pixels have all neighbors */
|
|||
|
for(x=1; x<w-1; x++, i++)
|
|||
|
{
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist <= 0) continue; // No need to update further
|
|||
|
|
|||
|
c = i+offset_l;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_lu;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_u;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_ur;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Rightmost pixel of row is special, has no right neighbors */
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist > 0) // If not already zero distance
|
|||
|
{
|
|||
|
c = i+offset_l;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_lu;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_u;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty+1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Move index to second rightmost pixel of current row. */
|
|||
|
/* Rightmost pixel is skipped, it has no right neighbor. */
|
|||
|
i = y*w + w-2;
|
|||
|
|
|||
|
/* scan left, propagate distance from right */
|
|||
|
for(x=w-2; x>=0; x--, i--)
|
|||
|
{
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist <= 0) continue; // Already zero distance
|
|||
|
|
|||
|
c = i+offset_r;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Scan rows in reverse order, except last row */
|
|||
|
for(y=h-2; y>=0; y--)
|
|||
|
{
|
|||
|
/* move index to rightmost pixel of current row */
|
|||
|
i = y*w + w-1;
|
|||
|
|
|||
|
/* Scan left, propagate distances from below & right */
|
|||
|
|
|||
|
/* Rightmost pixel is special, has no right neighbors */
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist > 0) // If not already zero distance
|
|||
|
{
|
|||
|
c = i+offset_d;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_dl;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
i--;
|
|||
|
|
|||
|
/* Middle pixels have all neighbors */
|
|||
|
for(x=w-2; x>0; x--, i--)
|
|||
|
{
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist <= 0) continue; // Already zero distance
|
|||
|
|
|||
|
c = i+offset_r;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_rd;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_d;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_dl;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
/* Leftmost pixel is special, has no left neighbors */
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist > 0) // If not already zero distance
|
|||
|
{
|
|||
|
c = i+offset_r;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_rd;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx-1;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
olddist=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
c = i+offset_d;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx;
|
|||
|
newdisty = cdisty-1;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Move index to second leftmost pixel of current row. */
|
|||
|
/* Leftmost pixel is skipped, it has no left neighbor. */
|
|||
|
i = y*w + 1;
|
|||
|
for(x=1; x<w; x++, i++)
|
|||
|
{
|
|||
|
/* scan right, propagate distance from left */
|
|||
|
olddist = dist[i];
|
|||
|
if(olddist <= 0) continue; // Already zero distance
|
|||
|
|
|||
|
c = i+offset_l;
|
|||
|
cdistx = distx[c];
|
|||
|
cdisty = disty[c];
|
|||
|
newdistx = cdistx+1;
|
|||
|
newdisty = cdisty;
|
|||
|
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
|
|||
|
if(newdist < olddist-epsilon)
|
|||
|
{
|
|||
|
distx[i]=newdistx;
|
|||
|
disty[i]=newdisty;
|
|||
|
dist[i]=newdist;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
while(changed); // Sweep until no more updates are made
|
|||
|
|
|||
|
/* The transformation is completed. */
|
|||
|
|
|||
|
}
|
|||
|
#ifdef __cplusplus
|
|||
|
}
|
|||
|
#endif
|