mirror of
https://github.com/smallmain/cocos-enhance-kit.git
synced 2025-01-27 21:31:02 +00:00
351 lines
8.2 KiB
C++
351 lines
8.2 KiB
C++
|
/**
|
||
|
Copyright 2013 BlackBerry Inc.
|
||
|
Copyright (c) 2013-2016 Chukong Technologies Inc.
|
||
|
Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
Original file from GamePlay3D: http://gameplay3d.org
|
||
|
|
||
|
This file was modified to fit the cocos2d-x project
|
||
|
*/
|
||
|
|
||
|
#include "math/Vec2.h"
|
||
|
#include "math/MathUtil.h"
|
||
|
#include "base/ccMacros.h"
|
||
|
|
||
|
NS_CC_MATH_BEGIN
|
||
|
|
||
|
// returns true if segment A-B intersects with segment C-D. S->E is the overlap part
|
||
|
bool isOneDimensionSegmentOverlap(float A, float B, float C, float D, float *S, float * E)
|
||
|
{
|
||
|
float ABmin = std::min(A, B);
|
||
|
float ABmax = std::max(A, B);
|
||
|
float CDmin = std::min(C, D);
|
||
|
float CDmax = std::max(C, D);
|
||
|
|
||
|
if (ABmax < CDmin || CDmax < ABmin)
|
||
|
{
|
||
|
// ABmin->ABmax->CDmin->CDmax or CDmin->CDmax->ABmin->ABmax
|
||
|
return false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (ABmin >= CDmin && ABmin <= CDmax)
|
||
|
{
|
||
|
// CDmin->ABmin->CDmax->ABmax or CDmin->ABmin->ABmax->CDmax
|
||
|
if (S != nullptr) *S = ABmin;
|
||
|
if (E != nullptr) *E = CDmax < ABmax ? CDmax : ABmax;
|
||
|
}
|
||
|
else if (ABmax >= CDmin && ABmax <= CDmax)
|
||
|
{
|
||
|
// ABmin->CDmin->ABmax->CDmax
|
||
|
if (S != nullptr) *S = CDmin;
|
||
|
if (E != nullptr) *E = ABmax;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// ABmin->CDmin->CDmax->ABmax
|
||
|
if (S != nullptr) *S = CDmin;
|
||
|
if (E != nullptr) *E = CDmax;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// cross product of 2 vector. A->B X C->D
|
||
|
float crossProduct2Vector(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
|
||
|
{
|
||
|
return (D.y - C.y) * (B.x - A.x) - (D.x - C.x) * (B.y - A.y);
|
||
|
}
|
||
|
|
||
|
float Vec2::angle(const Vec2& v1, const Vec2& v2)
|
||
|
{
|
||
|
float dz = v1.x * v2.y - v1.y * v2.x;
|
||
|
return atan2f(fabsf(dz) + MATH_FLOAT_SMALL, dot(v1, v2));
|
||
|
}
|
||
|
|
||
|
void Vec2::add(const Vec2& v1, const Vec2& v2, Vec2* dst)
|
||
|
{
|
||
|
GP_ASSERT(dst);
|
||
|
|
||
|
dst->x = v1.x + v2.x;
|
||
|
dst->y = v1.y + v2.y;
|
||
|
}
|
||
|
|
||
|
void Vec2::clamp(const Vec2& min, const Vec2& max)
|
||
|
{
|
||
|
GP_ASSERT(!(min.x > max.x || min.y > max.y ));
|
||
|
|
||
|
// Clamp the x value.
|
||
|
if (x < min.x)
|
||
|
x = min.x;
|
||
|
if (x > max.x)
|
||
|
x = max.x;
|
||
|
|
||
|
// Clamp the y value.
|
||
|
if (y < min.y)
|
||
|
y = min.y;
|
||
|
if (y > max.y)
|
||
|
y = max.y;
|
||
|
}
|
||
|
|
||
|
void Vec2::clamp(const Vec2& v, const Vec2& min, const Vec2& max, Vec2* dst)
|
||
|
{
|
||
|
GP_ASSERT(dst);
|
||
|
GP_ASSERT(!(min.x > max.x || min.y > max.y ));
|
||
|
|
||
|
// Clamp the x value.
|
||
|
dst->x = v.x;
|
||
|
if (dst->x < min.x)
|
||
|
dst->x = min.x;
|
||
|
if (dst->x > max.x)
|
||
|
dst->x = max.x;
|
||
|
|
||
|
// Clamp the y value.
|
||
|
dst->y = v.y;
|
||
|
if (dst->y < min.y)
|
||
|
dst->y = min.y;
|
||
|
if (dst->y > max.y)
|
||
|
dst->y = max.y;
|
||
|
}
|
||
|
|
||
|
float Vec2::distance(const Vec2& v) const
|
||
|
{
|
||
|
float dx = v.x - x;
|
||
|
float dy = v.y - y;
|
||
|
|
||
|
return std::sqrt(dx * dx + dy * dy);
|
||
|
}
|
||
|
|
||
|
float Vec2::dot(const Vec2& v1, const Vec2& v2)
|
||
|
{
|
||
|
return (v1.x * v2.x + v1.y * v2.y);
|
||
|
}
|
||
|
|
||
|
float Vec2::length() const
|
||
|
{
|
||
|
return std::sqrt(x * x + y * y);
|
||
|
}
|
||
|
|
||
|
void Vec2::normalize()
|
||
|
{
|
||
|
float n = x * x + y * y;
|
||
|
// Already normalized.
|
||
|
if (n == 1.0f)
|
||
|
return;
|
||
|
|
||
|
n = std::sqrt(n);
|
||
|
// Too close to zero.
|
||
|
if (n < MATH_TOLERANCE)
|
||
|
return;
|
||
|
|
||
|
n = 1.0f / n;
|
||
|
x *= n;
|
||
|
y *= n;
|
||
|
}
|
||
|
|
||
|
Vec2 Vec2::getNormalized() const
|
||
|
{
|
||
|
Vec2 v(*this);
|
||
|
v.normalize();
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
void Vec2::rotate(const Vec2& point, float angle)
|
||
|
{
|
||
|
float sinAngle = std::sin(angle);
|
||
|
float cosAngle = std::cos(angle);
|
||
|
|
||
|
if (point.isZero())
|
||
|
{
|
||
|
float tempX = x * cosAngle - y * sinAngle;
|
||
|
y = y * cosAngle + x * sinAngle;
|
||
|
x = tempX;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
float tempX = x - point.x;
|
||
|
float tempY = y - point.y;
|
||
|
|
||
|
x = tempX * cosAngle - tempY * sinAngle + point.x;
|
||
|
y = tempY * cosAngle + tempX * sinAngle + point.y;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Vec2::set(const float* array)
|
||
|
{
|
||
|
GP_ASSERT(array);
|
||
|
|
||
|
x = array[0];
|
||
|
y = array[1];
|
||
|
}
|
||
|
|
||
|
void Vec2::subtract(const Vec2& v1, const Vec2& v2, Vec2* dst)
|
||
|
{
|
||
|
GP_ASSERT(dst);
|
||
|
|
||
|
dst->x = v1.x - v2.x;
|
||
|
dst->y = v1.y - v2.y;
|
||
|
}
|
||
|
|
||
|
bool Vec2::equals(const Vec2& target) const
|
||
|
{
|
||
|
return (std::abs(this->x - target.x) < FLT_EPSILON)
|
||
|
&& (std::abs(this->y - target.y) < FLT_EPSILON);
|
||
|
}
|
||
|
|
||
|
bool Vec2::fuzzyEquals(const Vec2& b, float var) const
|
||
|
{
|
||
|
if(x - var <= b.x && b.x <= x + var)
|
||
|
if(y - var <= b.y && b.y <= y + var)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
float Vec2::getAngle(const Vec2& other) const
|
||
|
{
|
||
|
Vec2 a2 = getNormalized();
|
||
|
Vec2 b2 = other.getNormalized();
|
||
|
float angle = atan2f(a2.cross(b2), a2.dot(b2));
|
||
|
if (std::abs(angle) < FLT_EPSILON) return 0.f;
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
Vec2 Vec2::rotateByAngle(const Vec2& pivot, float angle) const
|
||
|
{
|
||
|
return pivot + (*this - pivot).rotate(Vec2::forAngle(angle));
|
||
|
}
|
||
|
|
||
|
bool Vec2::isLineIntersect(const Vec2& A, const Vec2& B,
|
||
|
const Vec2& C, const Vec2& D,
|
||
|
float *S, float *T)
|
||
|
{
|
||
|
// FAIL: Line undefined
|
||
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const float denom = crossProduct2Vector(A, B, C, D);
|
||
|
|
||
|
if (denom == 0)
|
||
|
{
|
||
|
// Lines parallel or overlap
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (S != nullptr) *S = crossProduct2Vector(C, D, C, A) / denom;
|
||
|
if (T != nullptr) *T = crossProduct2Vector(A, B, C, A) / denom;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Vec2::isLineParallel(const Vec2& A, const Vec2& B,
|
||
|
const Vec2& C, const Vec2& D)
|
||
|
{
|
||
|
// FAIL: Line undefined
|
||
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (crossProduct2Vector(A, B, C, D) == 0)
|
||
|
{
|
||
|
// line overlap
|
||
|
if (crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool Vec2::isLineOverlap(const Vec2& A, const Vec2& B,
|
||
|
const Vec2& C, const Vec2& D)
|
||
|
{
|
||
|
// FAIL: Line undefined
|
||
|
if ( (A.x==B.x && A.y==B.y) || (C.x==D.x && C.y==D.y) )
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (crossProduct2Vector(A, B, C, D) == 0 &&
|
||
|
(crossProduct2Vector(C, D, C, A) == 0 || crossProduct2Vector(A, B, C, A) == 0))
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool Vec2::isSegmentOverlap(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D, Vec2* S, Vec2* E)
|
||
|
{
|
||
|
|
||
|
if (isLineOverlap(A, B, C, D))
|
||
|
{
|
||
|
return isOneDimensionSegmentOverlap(A.x, B.x, C.x, D.x, &S->x, &E->x) &&
|
||
|
isOneDimensionSegmentOverlap(A.y, B.y, C.y, D.y, &S->y, &E->y);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool Vec2::isSegmentIntersect(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
|
||
|
{
|
||
|
float S, T;
|
||
|
|
||
|
if (isLineIntersect(A, B, C, D, &S, &T )&&
|
||
|
(S >= 0.0f && S <= 1.0f && T >= 0.0f && T <= 1.0f))
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
Vec2 Vec2::getIntersectPoint(const Vec2& A, const Vec2& B, const Vec2& C, const Vec2& D)
|
||
|
{
|
||
|
float S, T;
|
||
|
|
||
|
if (isLineIntersect(A, B, C, D, &S, &T))
|
||
|
{
|
||
|
// Vec2 of intersection
|
||
|
Vec2 P;
|
||
|
P.x = A.x + S * (B.x - A.x);
|
||
|
P.y = A.y + S * (B.y - A.y);
|
||
|
return P;
|
||
|
}
|
||
|
|
||
|
return Vec2::ZERO;
|
||
|
}
|
||
|
|
||
|
const Vec2 Vec2::ZERO(0.0f, 0.0f);
|
||
|
const Vec2 Vec2::ONE(1.0f, 1.0f);
|
||
|
const Vec2 Vec2::UNIT_X(1.0f, 0.0f);
|
||
|
const Vec2 Vec2::UNIT_Y(0.0f, 1.0f);
|
||
|
const Vec2 Vec2::ANCHOR_MIDDLE(0.5f, 0.5f);
|
||
|
const Vec2 Vec2::ANCHOR_BOTTOM_LEFT(0.0f, 0.0f);
|
||
|
const Vec2 Vec2::ANCHOR_TOP_LEFT(0.0f, 1.0f);
|
||
|
const Vec2 Vec2::ANCHOR_BOTTOM_RIGHT(1.0f, 0.0f);
|
||
|
const Vec2 Vec2::ANCHOR_TOP_RIGHT(1.0f, 1.0f);
|
||
|
const Vec2 Vec2::ANCHOR_MIDDLE_RIGHT(1.0f, 0.5f);
|
||
|
const Vec2 Vec2::ANCHOR_MIDDLE_LEFT(0.0f, 0.5f);
|
||
|
const Vec2 Vec2::ANCHOR_MIDDLE_TOP(0.5f, 1.0f);
|
||
|
const Vec2 Vec2::ANCHOR_MIDDLE_BOTTOM(0.5f, 0.0f);
|
||
|
|
||
|
NS_CC_MATH_END
|