2022-12-25 18:44:29 +08:00

264 lines
6.1 KiB
Go

package resolv
import (
"math"
)
// Space represents a collision space. Internally, each Space contains a 2D array of Cells, with each Cell being the same size. Cells contain information on which
// Objects occupy those spaces.
type Space struct {
Cells [][]*Cell
CellWidth, CellHeight int // Width and Height of each Cell in "world-space" / pixels / whatever
}
// NewSpace creates a new Space. spaceWidth and spaceHeight is the width and height of the Space (usually in pixels), which is then populated with cells of size
// cellWidth by cellHeight. Generally, you want cells to be the size of the smallest collide-able objects in your game, and you want to move Objects at a maximum
// speed of one cell size per collision check to avoid missing any possible collisions.
func NewSpace(spaceWidth, spaceHeight, cellWidth, cellHeight int) *Space {
sp := &Space{
CellWidth: cellWidth,
CellHeight: cellHeight,
}
sp.Resize(spaceWidth/cellWidth, spaceHeight/cellHeight)
// sp.Resize(int(math.Ceil(float64(spaceWidth)/float64(cellWidth))),
// int(math.Ceil(float64(spaceHeight)/float64(cellHeight))))
return sp
}
// Add adds the specified Objects to the Space, updating the Space's cells to refer to the Object.
func (sp *Space) Add(objects ...*Object) {
if sp == nil {
panic("ERROR: space is nil")
}
for _, obj := range objects {
obj.Space = sp
// We call Update() once to make sure the object gets its cells added.
obj.Update()
}
}
// Remove removes the specified Objects from being associated with the Space. This should be done whenever an Object is removed from the
// game.
func (sp *Space) Remove(objects ...*Object) {
if sp == nil {
panic("ERROR: space is nil")
}
for _, obj := range objects {
for _, cell := range obj.TouchingCells {
cell.unregister(obj)
}
obj.TouchingCells = []*Cell{}
obj.Space = nil
}
}
// Objects loops through all Cells in the Space (from top to bottom, and from left to right) to return all Objects
// that exist in the Space. Of course, each Object is counted only once.
func (sp *Space) Objects() []*Object {
objectsAdded := map[*Object]bool{}
objects := []*Object{}
for cy := range sp.Cells {
for cx := range sp.Cells[cy] {
for _, o := range sp.Cells[cy][cx].Objects {
if _, added := objectsAdded[o]; !added {
objects = append(objects, o)
objectsAdded[o] = true
}
}
}
}
return objects
}
// Resize resizes the internal Cells array.
func (sp *Space) Resize(width, height int) {
sp.Cells = [][]*Cell{}
for y := 0; y < height; y++ {
sp.Cells = append(sp.Cells, []*Cell{})
for x := 0; x < width; x++ {
sp.Cells[y] = append(sp.Cells[y], newCell(x, y))
}
}
}
// Cell returns the Cell at the given cellular / spatial (not world) X and Y position in the Space. If the X and Y position are
// out of bounds, Cell() will return nil.
func (sp *Space) Cell(x, y int) *Cell {
if y >= 0 && y < len(sp.Cells) && x >= 0 && x < len(sp.Cells[y]) {
return sp.Cells[y][x]
}
return nil
}
// CheckCells checks a set of cells (from x,y to x + w, y + h in cellular coordinates) and return the first object within those Cells that contains any of the tags given.
// If no tags are given, then CheckCells will return the first Object found in any Cell.
func (sp *Space) CheckCells(x, y, w, h int, tags ...string) *Object {
for ix := x; ix < x+w; ix++ {
for iy := y; iy < y+h; iy++ {
cell := sp.Cell(ix, iy)
if cell != nil {
if len(tags) > 0 {
if cell.ContainsTags(tags...) {
for _, obj := range cell.Objects {
if obj.HasTags(tags...) {
return obj
}
}
}
} else if cell.Occupied() {
return cell.Objects[0]
}
}
}
}
return nil
}
// CheckCellsWorld checks the cells of the Grid with the given world coordinates.
// Internally, this is just syntactic sugar for calling Space.WorldToSpace() on the
// position and size given.
func (sp *Space) CheckCellsWorld(x, y, w, h float64, tags ...string) *Object {
sx, sy := sp.WorldToSpace(x, y)
cw, ch := sp.WorldToSpace(w, h)
return sp.CheckCells(sx, sy, cw, ch, tags...)
}
// UnregisterAllObjects unregisters all Objects registered to Cells in the Space.
func (sp *Space) UnregisterAllObjects() {
for y := 0; y < len(sp.Cells); y++ {
for x := 0; x < len(sp.Cells[y]); x++ {
cell := sp.Cells[y][x]
sp.Remove(cell.Objects...)
}
}
}
// WorldToSpace converts from a world position (x, y) to a position in the Space (a grid-based position).
func (sp *Space) WorldToSpace(x, y float64) (int, int) {
fx := int(math.Floor(x / float64(sp.CellWidth)))
fy := int(math.Floor(y / float64(sp.CellHeight)))
return fx, fy
}
// SpaceToWorld converts from a position in the Space (on a grid) to a world-based position, given the size of the Space when first created.
func (sp *Space) SpaceToWorld(x, y int) (float64, float64) {
fx := float64(x * sp.CellWidth)
fy := float64(y * sp.CellHeight)
return fx, fy
}
// Height returns the height of the Space grid in Cells (so a 320x240 Space with 16x16 cells would have a height of 15).
func (sp *Space) Height() int {
return len(sp.Cells)
}
// Width returns the width of the Space grid in Cells (so a 320x240 Space with 16x16 cells would have a width of 20).
func (sp *Space) Width() int {
if len(sp.Cells) > 0 {
return len(sp.Cells[0])
}
return 0
}
func (sp *Space) CellsInLine(startX, startY, endX, endY int) []*Cell {
cells := []*Cell{}
cell := sp.Cell(startX, startY)
endCell := sp.Cell(endX, endY)
if cell != nil && endCell != nil {
dv := Vector{float64(endX - startX), float64(endY - startY)}.Unit()
dv[0] *= float64(sp.CellWidth / 2)
dv[1] *= float64(sp.CellHeight / 2)
pX, pY := sp.SpaceToWorld(startX, startY)
p := Vector{pX + float64(sp.CellWidth/2), pY + float64(sp.CellHeight/2)}
alternate := false
for cell != nil {
if cell == endCell {
cells = append(cells, cell)
break
}
cells = append(cells, cell)
if alternate {
p[1] += dv[1]
} else {
p[0] += dv[0]
}
cx, cy := sp.WorldToSpace(p[0], p[1])
c := sp.Cell(cx, cy)
if c != cell {
cell = c
}
alternate = !alternate
}
}
return cells
}