package battle import ( "math" "resolv" ) const ( MAX_FLOAT64 = 1.7e+308 MAX_INT32 = int32(999999999) COLLISION_PLAYER_INDEX_PREFIX = (1 << 17) COLLISION_BARRIER_INDEX_PREFIX = (1 << 16) COLLISION_BULLET_INDEX_PREFIX = (1 << 15) PATTERN_ID_UNABLE_TO_OP = -2 PATTERN_ID_NO_OP = -1 WORLD_TO_VIRTUAL_GRID_RATIO = float64(100) VIRTUAL_GRID_TO_WORLD_RATIO = float64(1.0) / WORLD_TO_VIRTUAL_GRID_RATIO GRAVITY_X = int32(0) GRAVITY_Y = -int32(float64(0.5) * WORLD_TO_VIRTUAL_GRID_RATIO) // makes all "playerCollider.Y" a multiple of 0.5 in all cases INPUT_DELAY_FRAMES = int32(8) // in the count of render frames INPUT_SCALE_FRAMES = uint32(2) // inputDelayedAndScaledFrameId = ((originalFrameId - InputDelayFrames) >> InputScaleFrames) NST_DELAY_FRAMES = int32(16) // network-single-trip delay in the count of render frames, proposed to be (InputDelayFrames >> 1) because we expect a round-trip delay to be exactly "InputDelayFrames" SNAP_INTO_PLATFORM_OVERLAP = float64(0.1) SNAP_INTO_PLATFORM_THRESHOLD = float64(0.5) NO_SKILL = -1 NO_SKILL_HIT = -1 ) // These directions are chosen such that when speed is changed to "(speedX+delta, speedY+delta)" for any of them, the direction is unchanged. var DIRECTION_DECODER = [][]int32{ {0, 0}, {0, +2}, {0, -2}, {+2, 0}, {-2, 0}, {+1, +1}, {-1, -1}, {+1, -1}, {-1, +1}, } const ( ATK_CHARACTER_STATE_IDLE1 = int32(0) ATK_CHARACTER_STATE_WALKING = int32(1) ATK_CHARACTER_STATE_ATK1 = int32(2) ATK_CHARACTER_STATE_ATKED1 = int32(3) ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP = int32(4) ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP = int32(5) ATK_CHARACTER_STATE_INAIR_ATK1 = int32(6) ATK_CHARACTER_STATE_INAIR_ATKED1 = int32(7) ATK_CHARACTER_STATE_BLOWN_UP1 = int32(8) ATK_CHARACTER_STATE_LAY_DOWN1 = int32(9) ATK_CHARACTER_STATE_GET_UP1 = int32(10) ATK_CHARACTER_STATE_ATK2 = int32(11) ATK_CHARACTER_STATE_ATK3 = int32(12) ) var inAirSet = map[int32]bool{ ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP: true, ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP: true, ATK_CHARACTER_STATE_INAIR_ATK1: true, ATK_CHARACTER_STATE_INAIR_ATKED1: true, ATK_CHARACTER_STATE_BLOWN_UP1: true, } var noOpSet = map[int32]bool{ ATK_CHARACTER_STATE_ATKED1: true, ATK_CHARACTER_STATE_INAIR_ATKED1: true, ATK_CHARACTER_STATE_BLOWN_UP1: true, ATK_CHARACTER_STATE_LAY_DOWN1: true, // During the invinsible frames of GET_UP1, the player is allowed to take any action } var invinsibleSet = map[int32]bool{ ATK_CHARACTER_STATE_BLOWN_UP1: true, ATK_CHARACTER_STATE_LAY_DOWN1: true, ATK_CHARACTER_STATE_GET_UP1: true, } var nonAttackingSet = map[int32]bool{} func ConvertToInputFrameId(renderFrameId int32, inputDelayFrames int32, inputScaleFrames uint32) int32 { if renderFrameId < inputDelayFrames { return 0 } return ((renderFrameId - inputDelayFrames) >> inputScaleFrames) } func decodeInput(encodedInput uint64) *InputFrameDecoded { encodedDirection := (encodedInput & uint64(15)) btnALevel := int32((encodedInput >> 4) & 1) btnBLevel := int32((encodedInput >> 5) & 1) return &InputFrameDecoded{ Dx: DIRECTION_DECODER[encodedDirection][0], Dy: DIRECTION_DECODER[encodedDirection][1], BtnALevel: btnALevel, BtnBLevel: btnBLevel, } } type SatResult struct { Overlap float64 OverlapX float64 OverlapY float64 AContainedInB bool BContainedInA bool Axis resolv.Vector } func CalcPushbacks(oldDx, oldDy float64, playerShape, barrierShape *resolv.ConvexPolygon) (bool, float64, float64, *SatResult) { origX, origY := playerShape.Position() defer func() { playerShape.SetPosition(origX, origY) }() playerShape.SetPosition(origX+oldDx, origY+oldDy) overlapResult := &SatResult{ Overlap: 0, OverlapX: 0, OverlapY: 0, AContainedInB: true, BContainedInA: true, Axis: resolv.Vector{0, 0}, } if overlapped := isPolygonPairOverlapped(playerShape, barrierShape, overlapResult); overlapped { pushbackX, pushbackY := overlapResult.Overlap*overlapResult.OverlapX, overlapResult.Overlap*overlapResult.OverlapY return true, pushbackX, pushbackY, overlapResult } else { return false, 0, 0, overlapResult } } func isPolygonPairOverlapped(a, b *resolv.ConvexPolygon, result *SatResult) bool { aCnt, bCnt := len(a.Points), len(b.Points) // Single point case if 1 == aCnt && 1 == bCnt { if nil != result { result.Overlap = 0 } return a.Points[0][0] == b.Points[0][0] && a.Points[0][1] == b.Points[0][1] } if 1 < aCnt { for _, axis := range a.SATAxes() { if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) { return false } } } if 1 < bCnt { for _, axis := range b.SATAxes() { if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) { return false } } } return true } func isPolygonPairSeparatedByDir(a, b *resolv.ConvexPolygon, e resolv.Vector, result *SatResult) bool { /* [WARNING] This function is deliberately made private, it shouldn't be used alone (i.e. not along the norms of a polygon), otherwise the pushbacks calculated would be meaningless. Consider the following example a: { anchor: [1337.19 1696.74] points: [[0 0] [24 0] [24 24] [0 24]] }, b: { anchor: [1277.72 1570.56] points: [[642.57 319.16] [0 319.16] [5.73 0] [643.75 0.90]] } e = (-2.98, 1.49).Unit() */ var aStart, aEnd, bStart, bEnd float64 = MAX_FLOAT64, -MAX_FLOAT64, MAX_FLOAT64, -MAX_FLOAT64 for _, p := range a.Points { dot := (p[0]+a.X)*e[0] + (p[1]+a.Y)*e[1] if aStart > dot { aStart = dot } if aEnd < dot { aEnd = dot } } for _, p := range b.Points { dot := (p[0]+b.X)*e[0] + (p[1]+b.Y)*e[1] if bStart > dot { bStart = dot } if bEnd < dot { bEnd = dot } } if aStart > bEnd || aEnd < bStart { // Separated by unit vector "e" return true } if nil != result { overlap := float64(0) if aStart < bStart { result.AContainedInB = false if aEnd < bEnd { overlap = aEnd - bStart result.BContainedInA = false } else { option1 := aEnd - bStart option2 := bEnd - aStart if option1 < option2 { overlap = option1 } else { overlap = -option2 } } } else { result.BContainedInA = false if aEnd > bEnd { overlap = aStart - bEnd result.AContainedInB = false } else { option1 := aEnd - bStart option2 := bEnd - aStart if option1 < option2 { overlap = option1 } else { overlap = -option2 } } } currentOverlap := result.Overlap absoluteOverlap := overlap if overlap < 0 { absoluteOverlap = -overlap } if (0 == result.Axis[0] && 0 == result.Axis[1]) || currentOverlap > absoluteOverlap { var sign float64 = 1 if overlap < 0 { sign = -1 } result.Overlap = absoluteOverlap result.OverlapX = e[0] * sign result.OverlapY = e[1] * sign } result.Axis = e } // the specified unit vector "e" doesn't separate "a" and "b", overlap result is generated return false } func WorldToVirtualGridPos(wx, wy float64) (int32, int32) { // [WARNING] Introduces loss of precision! // In JavaScript floating numbers suffer from seemingly non-deterministic arithmetics, and even if certain libs solved this issue by approaches such as fixed-point-number, they might not be used in other libs -- e.g. the "collision libs" we're interested in -- thus couldn't kill all pains. var virtualGridX int32 = int32(math.Floor(wx * WORLD_TO_VIRTUAL_GRID_RATIO)) var virtualGridY int32 = int32(math.Floor(wy * WORLD_TO_VIRTUAL_GRID_RATIO)) return virtualGridX, virtualGridY } func VirtualGridToWorldPos(vx, vy int32) (float64, float64) { // No loss of precision var wx float64 = float64(vx) * VIRTUAL_GRID_TO_WORLD_RATIO var wy float64 = float64(vy) * VIRTUAL_GRID_TO_WORLD_RATIO return wx, wy } func WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) { return wx - halfBoundingW - leftPadding + collisionSpaceOffsetX, wy - halfBoundingH - bottomPadding + collisionSpaceOffsetY } func PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) { return cx + halfBoundingW + leftPadding - collisionSpaceOffsetX, cy + halfBoundingH + bottomPadding - collisionSpaceOffsetY } func PolygonColliderBLToVirtualGridPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (int32, int32) { wx, wy := PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY) return WorldToVirtualGridPos(wx, wy) } func VirtualGridToPolygonColliderBLPos(vx, vy int32, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) { wx, wy := VirtualGridToWorldPos(vx, vy) return WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY) } func calcHardPushbacksNorms(joinIndex int32, playerCollider *resolv.Object, playerShape *resolv.ConvexPolygon, snapIntoPlatformOverlap float64, pEffPushback *Vec2D) *[]Vec2D { ret := make([]Vec2D, 0, 10) // no one would simultaneously have more than 5 hardPushbacks collision := playerCollider.Check(0, 0) if nil == collision { return &ret } //playerColliderCenterX, playerColliderCenterY := playerCollider.Center() //fmt.Printf("joinIndex=%d calcHardPushbacksNorms has non-empty collision;playerColliderPos=(%.2f,%.2f)\n", joinIndex, playerColliderCenterX, playerColliderCenterY) for _, obj := range collision.Objects { isBarrier := false switch obj.Data.(type) { case *PlayerDownsync: case *MeleeBullet: default: // By default it's a regular barrier, even if data is nil, note that Golang syntax of switch-case is kind of confusing, this "default" condition is met only if "!*PlayerDownsync && !*MeleeBullet". isBarrier = true } if !isBarrier { continue } barrierShape := obj.Shape.(*resolv.ConvexPolygon) overlapped, pushbackX, pushbackY, overlapResult := CalcPushbacks(0, 0, playerShape, barrierShape) if !overlapped { continue } // ALWAY snap into hardPushbacks! // [OverlapX, OverlapY] is the unit vector that points into the platform pushbackX, pushbackY = (overlapResult.Overlap-snapIntoPlatformOverlap)*overlapResult.OverlapX, (overlapResult.Overlap-snapIntoPlatformOverlap)*overlapResult.OverlapY ret = append(ret, Vec2D{X: overlapResult.OverlapX, Y: overlapResult.OverlapY}) pEffPushback.X += pushbackX pEffPushback.Y += pushbackY //fmt.Printf("joinIndex=%d calcHardPushbacksNorms found one hardpushback; immediatePushback=(%.2f,%.2f)\n", joinIndex, pushbackX, pushbackY) } return &ret } func deriveOpPattern(currPlayerDownsync, thatPlayerInNextFrame *PlayerDownsync, currRenderFrame *RoomDownsyncFrame, inputsBuffer *RingBuffer, inputDelayFrames int32, inputScaleFrames uint32) (int, bool, int32, int32) { // returns (patternId, jumpedOrNot, effectiveDx, effectiveDy) delayedInputFrameId := ConvertToInputFrameId(currRenderFrame.Id, inputDelayFrames, inputScaleFrames) delayedInputFrameIdForPrevRdf := ConvertToInputFrameId(currRenderFrame.Id-1, inputDelayFrames, inputScaleFrames) if 0 >= delayedInputFrameId { return PATTERN_ID_UNABLE_TO_OP, false, 0, 0 } if _, existent := noOpSet[currPlayerDownsync.CharacterState]; existent { return PATTERN_ID_UNABLE_TO_OP, false, 0, 0 } delayedInputList := inputsBuffer.GetByFrameId(delayedInputFrameId).(*InputFrameDownsync).InputList var delayedInputListForPrevRdf []uint64 = nil if 0 < delayedInputFrameIdForPrevRdf { delayedInputListForPrevRdf = inputsBuffer.GetByFrameId(delayedInputFrameIdForPrevRdf).(*InputFrameDownsync).InputList } jumpedOrNot := false joinIndex := currPlayerDownsync.JoinIndex decodedInput := decodeInput(delayedInputList[joinIndex-1]) effDx, effDy := int32(0), int32(0) prevBtnALevel, prevBtnBLevel := int32(0), int32(0) if nil != delayedInputListForPrevRdf { prevDecodedInput := decodeInput(delayedInputListForPrevRdf[joinIndex-1]) prevBtnALevel = prevDecodedInput.BtnALevel prevBtnBLevel = prevDecodedInput.BtnBLevel } if 0 == currPlayerDownsync.FramesToRecover { // Jumping and moving are only allowed here effDx, effDy = decodedInput.Dx, decodedInput.Dy if decodedInput.BtnBLevel > prevBtnBLevel { if _, existent := inAirSet[currPlayerDownsync.CharacterState]; !existent { jumpedOrNot = true } } } patternId := PATTERN_ID_NO_OP if decodedInput.BtnALevel > prevBtnALevel { patternId = 1 } return patternId, jumpedOrNot, effDx, effDy } // [WARNING] The params of this method is carefully tuned such that only "battle.RoomDownsyncFrame" is a necessary custom struct. func ApplyInputFrameDownsyncDynamicsOnSingleRenderFrame(inputsBuffer *RingBuffer, currRenderFrame *RoomDownsyncFrame, collisionSys *resolv.Space, collisionSysMap map[int32]*resolv.Object, collisionSpaceOffsetX, collisionSpaceOffsetY float64, chConfigsOrderedByJoinIndex []*CharacterConfig) *RoomDownsyncFrame { // [WARNING] On backend this function MUST BE called while "InputsBufferLock" is locked! roomCapacity := len(currRenderFrame.PlayersArr) nextRenderFramePlayers := make([]*PlayerDownsync, roomCapacity) // Make a copy first for i, currPlayerDownsync := range currRenderFrame.PlayersArr { nextRenderFramePlayers[i] = &PlayerDownsync{ Id: currPlayerDownsync.Id, VirtualGridX: currPlayerDownsync.VirtualGridX, VirtualGridY: currPlayerDownsync.VirtualGridY, DirX: currPlayerDownsync.DirX, DirY: currPlayerDownsync.DirY, VelX: currPlayerDownsync.VelX, VelY: currPlayerDownsync.VelY, CharacterState: currPlayerDownsync.CharacterState, InAir: true, Speed: currPlayerDownsync.Speed, BattleState: currPlayerDownsync.BattleState, Score: currPlayerDownsync.Score, Removed: currPlayerDownsync.Removed, JoinIndex: currPlayerDownsync.JoinIndex, Hp: currPlayerDownsync.Hp, MaxHp: currPlayerDownsync.MaxHp, FramesToRecover: currPlayerDownsync.FramesToRecover - 1, FramesInChState: currPlayerDownsync.FramesInChState + 1, ActiveSkillId: currPlayerDownsync.ActiveSkillId, ActiveSkillHit: currPlayerDownsync.ActiveSkillHit, } if nextRenderFramePlayers[i].FramesToRecover < 0 { nextRenderFramePlayers[i].FramesToRecover = 0 } } nextRenderFrameMeleeBullets := make([]*MeleeBullet, 0, len(currRenderFrame.MeleeBullets)) // Is there any better way to reduce malloc/free impact, e.g. smart prediction for fixed memory allocation? effPushbacks := make([]Vec2D, roomCapacity) hardPushbackNorms := make([]*[]Vec2D, roomCapacity) jumpedOrNotList := make([]bool, roomCapacity) // 1. Process player inputs for i, currPlayerDownsync := range currRenderFrame.PlayersArr { jumpedOrNotList[i] = false chConfig := chConfigsOrderedByJoinIndex[i] thatPlayerInNextFrame := nextRenderFramePlayers[i] patternId, jumpedOrNot, effDx, effDy := deriveOpPattern(currPlayerDownsync, thatPlayerInNextFrame, currRenderFrame, inputsBuffer, INPUT_DELAY_FRAMES, INPUT_SCALE_FRAMES) if jumpedOrNot { thatPlayerInNextFrame.VelY = int32(chConfig.JumpingInitVelY) jumpedOrNotList[i] = true } joinIndex := currPlayerDownsync.JoinIndex skillId := chConfig.SkillMapper(patternId, currPlayerDownsync) if skillConfig, existent := skills[skillId]; existent { thatPlayerInNextFrame.ActiveSkillId = int32(skillId) thatPlayerInNextFrame.ActiveSkillHit = 0 // TODO: Respect non-zero "selfLockVel" // Hardcoded to use only the first hit for now switch v := skillConfig.Hits[thatPlayerInNextFrame.ActiveSkillHit].(type) { case *MeleeBullet: var newBullet MeleeBullet = *v // Copied primitive fields into an onstack variable newBullet.OriginatedRenderFrameId = currRenderFrame.Id newBullet.OffenderJoinIndex = joinIndex nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, &newBullet) thatPlayerInNextFrame.FramesToRecover = skillConfig.RecoveryFrames } thatPlayerInNextFrame.CharacterState = skillConfig.BoundChState if false == currPlayerDownsync.InAir { thatPlayerInNextFrame.VelX = 0 } continue // Don't allow movement if skill is used } if 0 == currPlayerDownsync.FramesToRecover { if 0 != effDx || 0 != effDy { thatPlayerInNextFrame.DirX, thatPlayerInNextFrame.DirY = effDx, effDy thatPlayerInNextFrame.VelX = effDx * currPlayerDownsync.Speed thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_WALKING } else { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1 thatPlayerInNextFrame.VelX = 0 } } } // 2. Process player movement for i, currPlayerDownsync := range currRenderFrame.PlayersArr { joinIndex := currPlayerDownsync.JoinIndex effPushbacks[joinIndex-1].X, effPushbacks[joinIndex-1].Y = float64(0), float64(0) collisionPlayerIndex := COLLISION_PLAYER_INDEX_PREFIX + joinIndex playerCollider := collisionSysMap[collisionPlayerIndex] thatPlayerInNextFrame := nextRenderFramePlayers[i] chConfig := chConfigsOrderedByJoinIndex[i] // Reset playerCollider position from the "virtual grid position" newVx, newVy := currPlayerDownsync.VirtualGridX+currPlayerDownsync.VelX, currPlayerDownsync.VirtualGridY+currPlayerDownsync.VelY if jumpedOrNotList[i] { newVy += chConfig.JumpingInitVelY // Immediately gets out of any snapping } playerCollider.X, playerCollider.Y = VirtualGridToPolygonColliderBLPos(newVx, newVy, playerCollider.W*0.5, playerCollider.H*0.5, 0, 0, 0, 0, collisionSpaceOffsetX, collisionSpaceOffsetY) // Update in the collision system playerCollider.Update() if currPlayerDownsync.InAir { thatPlayerInNextFrame.VelX += GRAVITY_X thatPlayerInNextFrame.VelY += GRAVITY_Y } } // 3. Add bullet colliders into collision system bulletColliders := make([]*resolv.Object, 0, len(currRenderFrame.MeleeBullets)) // Will all be removed at the end of this function due to the need for being rollback-compatible for _, meleeBullet := range currRenderFrame.MeleeBullets { if (meleeBullet.OriginatedRenderFrameId+meleeBullet.StartupFrames <= currRenderFrame.Id) && (meleeBullet.OriginatedRenderFrameId+meleeBullet.StartupFrames+meleeBullet.ActiveFrames > currRenderFrame.Id) { offender := currRenderFrame.PlayersArr[meleeBullet.OffenderJoinIndex-1] xfac := int32(1) // By now, straight Punch offset doesn't respect "y-axis" if 0 > offender.DirX { xfac = -xfac } bulletWx, bulletWy := VirtualGridToWorldPos(offender.VirtualGridX+xfac*meleeBullet.HitboxOffsetX, offender.VirtualGridY) hitboxSizeWx, hitboxSizeWy := VirtualGridToWorldPos(meleeBullet.HitboxSizeX, meleeBullet.HitboxSizeY) newBulletCollider := GenerateRectCollider(bulletWx, bulletWy, hitboxSizeWx, hitboxSizeWy, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, collisionSpaceOffsetX, collisionSpaceOffsetY, meleeBullet, "MeleeBullet") collisionSys.Add(newBulletCollider) bulletColliders = append(bulletColliders, newBulletCollider) } else { nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, meleeBullet) } } // 4. Calc pushbacks for each player (after its movement) w/o bullets for i, currPlayerDownsync := range currRenderFrame.PlayersArr { joinIndex := currPlayerDownsync.JoinIndex collisionPlayerIndex := COLLISION_PLAYER_INDEX_PREFIX + joinIndex playerCollider := collisionSysMap[collisionPlayerIndex] playerShape := playerCollider.Shape.(*resolv.ConvexPolygon) hardPushbackNorms[joinIndex-1] = calcHardPushbacksNorms(joinIndex, playerCollider, playerShape, SNAP_INTO_PLATFORM_OVERLAP, &(effPushbacks[joinIndex-1])) thatPlayerInNextFrame := nextRenderFramePlayers[i] chConfig := chConfigsOrderedByJoinIndex[i] landedOnGravityPushback := false if collision := playerCollider.Check(0, 0); nil != collision { for _, obj := range collision.Objects { isBarrier, isAnotherPlayer, isBullet := false, false, false switch obj.Data.(type) { case *PlayerDownsync: isAnotherPlayer = true case *MeleeBullet: isBullet = true default: // By default it's a regular barrier, even if data is nil isBarrier = true } if isBullet { // ignore bullets for this step continue } bShape := obj.Shape.(*resolv.ConvexPolygon) overlapped, pushbackX, pushbackY, overlapResult := CalcPushbacks(0, 0, playerShape, bShape) if !overlapped { continue } normAlignmentWithGravity := (overlapResult.OverlapX*float64(0) + overlapResult.OverlapY*float64(-1.0)) if isAnotherPlayer { // [WARNING] The "zero overlap collision" might be randomly detected/missed on either frontend or backend, to have deterministic result we added paddings to all sides of a playerCollider. As each velocity component of (velX, velY) being a multiple of 0.5 at any renderFrame, each position component of (x, y) can only be a multiple of 0.5 too, thus whenever a 1-dimensional collision happens between players from [player#1: i*0.5, player#2: j*0.5, not collided yet] to [player#1: (i+k)*0.5, player#2: j*0.5, collided], the overlap becomes (i+k-j)*0.5+2*s, and after snapping subtraction the effPushback magnitude for each player is (i+k-j)*0.5, resulting in 0.5-multiples-position for the next renderFrame. pushbackX, pushbackY = (overlapResult.Overlap-SNAP_INTO_PLATFORM_OVERLAP*2)*overlapResult.OverlapX, (overlapResult.Overlap-SNAP_INTO_PLATFORM_OVERLAP*2)*overlapResult.OverlapY } for _, hardPushbackNorm := range *hardPushbackNorms[joinIndex-1] { projectedMagnitude := pushbackX*hardPushbackNorm.X + pushbackY*hardPushbackNorm.Y if isBarrier || (isAnotherPlayer && 0 > projectedMagnitude) { pushbackX -= projectedMagnitude * hardPushbackNorm.X pushbackY -= projectedMagnitude * hardPushbackNorm.Y } } effPushbacks[joinIndex-1].X += pushbackX effPushbacks[joinIndex-1].Y += pushbackY if SNAP_INTO_PLATFORM_THRESHOLD < normAlignmentWithGravity { landedOnGravityPushback = true //playerColliderCenterX, playerColliderCenterY := playerCollider.Center() //fmt.Printf("joinIndex=%d landedOnGravityPushback\n{renderFrame.id: %d, isBarrier: %v, isAnotherPlayer: %v}\nhardPushbackNormsOfThisPlayer=%v, playerColliderPos=(%.2f,%.2f), immediatePushback={%.3f, %.3f}, effPushback={%.3f, %.3f}, overlapMag=%.4f\n", joinIndex, currRenderFrame.Id, isBarrier, isAnotherPlayer, *hardPushbackNorms[joinIndex-1], playerColliderCenterX, playerColliderCenterY, pushbackX, pushbackY, effPushbacks[joinIndex-1].X, effPushbacks[joinIndex-1].Y, overlapResult.Overlap) } } } if landedOnGravityPushback { thatPlayerInNextFrame.InAir = false if currPlayerDownsync.InAir && 0 >= currPlayerDownsync.VelY { // fallStopping thatPlayerInNextFrame.VelX = 0 thatPlayerInNextFrame.VelY = 0 if ATK_CHARACTER_STATE_BLOWN_UP1 == thatPlayerInNextFrame.CharacterState { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_LAY_DOWN1 thatPlayerInNextFrame.FramesToRecover = chConfig.LayDownFramesToRecover } else { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1 thatPlayerInNextFrame.FramesToRecover = 0 } } else { // not fallStopping, could be in LayDown or GetUp if ATK_CHARACTER_STATE_LAY_DOWN1 == thatPlayerInNextFrame.CharacterState { if 0 == thatPlayerInNextFrame.FramesToRecover { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_GET_UP1 thatPlayerInNextFrame.FramesToRecover = chConfig.GetUpFramesToRecover } } else if ATK_CHARACTER_STATE_GET_UP1 == thatPlayerInNextFrame.CharacterState { if thatPlayerInNextFrame.FramesInChState == chConfig.GetUpFrames { // [WARNING] Before reaching here, the player had 3 invinsible frames to either attack or jump, if it ever took any action then this condition wouldn't have been met, thus we hereby only transit it back to IDLE as it took no action thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1 } } } } } // 5. Check bullet-anything collisions for _, bulletCollider := range bulletColliders { collision := bulletCollider.Check(0, 0) bulletCollider.Space.Remove(bulletCollider) // Make sure that the bulletCollider is always removed for each renderFrame switch v := bulletCollider.Data.(type) { case *MeleeBullet: if nil == collision { nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, v) continue } bulletShape := bulletCollider.Shape.(*resolv.ConvexPolygon) offender := currRenderFrame.PlayersArr[v.OffenderJoinIndex-1] for _, obj := range collision.Objects { defenderShape := obj.Shape.(*resolv.ConvexPolygon) switch t := obj.Data.(type) { case *PlayerDownsync: if v.OffenderJoinIndex == t.JoinIndex { continue } if _, existent := invinsibleSet[t.CharacterState]; existent { continue } overlapped, _, _, _ := CalcPushbacks(0, 0, bulletShape, defenderShape) if !overlapped { continue } xfac := int32(1) // By now, straight Punch offset doesn't respect "y-axis" if 0 > offender.DirX { xfac = -xfac } pushbackVelX, pushbackVelY := xfac*v.PushbackVelX, v.PushbackVelY atkedPlayerInNextFrame := nextRenderFramePlayers[t.JoinIndex-1] atkedPlayerInNextFrame.VelX = pushbackVelX atkedPlayerInNextFrame.VelY = pushbackVelY if v.BlowUp { atkedPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_BLOWN_UP1 } else { atkedPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_ATKED1 } oldFramesToRecover := nextRenderFramePlayers[t.JoinIndex-1].FramesToRecover if v.HitStunFrames > oldFramesToRecover { atkedPlayerInNextFrame.FramesToRecover = v.HitStunFrames } default: } } } } // 6. Get players out of stuck barriers if there's any for i, currPlayerDownsync := range currRenderFrame.PlayersArr { joinIndex := currPlayerDownsync.JoinIndex collisionPlayerIndex := COLLISION_PLAYER_INDEX_PREFIX + joinIndex playerCollider := collisionSysMap[collisionPlayerIndex] // Update "virtual grid position" thatPlayerInNextFrame := nextRenderFramePlayers[i] thatPlayerInNextFrame.VirtualGridX, thatPlayerInNextFrame.VirtualGridY = PolygonColliderBLToVirtualGridPos(playerCollider.X-effPushbacks[joinIndex-1].X, playerCollider.Y-effPushbacks[joinIndex-1].Y, playerCollider.W*0.5, playerCollider.H*0.5, 0, 0, 0, 0, collisionSpaceOffsetX, collisionSpaceOffsetY) // Update "CharacterState" if thatPlayerInNextFrame.InAir { oldNextCharacterState := thatPlayerInNextFrame.CharacterState switch oldNextCharacterState { case ATK_CHARACTER_STATE_IDLE1, ATK_CHARACTER_STATE_WALKING: if jumpedOrNotList[i] || ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP == currPlayerDownsync.CharacterState { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP } else { thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP } case ATK_CHARACTER_STATE_ATK1: thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_ATK1 // No inAir transition for ATK2/ATK3 for now case ATK_CHARACTER_STATE_ATKED1: thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_ATKED1 } } // Reset "FramesInChState" if "CharacterState" is changed if thatPlayerInNextFrame.CharacterState != currPlayerDownsync.CharacterState { thatPlayerInNextFrame.FramesInChState = 0 } // Remove any active skill if not attacking if _, existent := nonAttackingSet[thatPlayerInNextFrame.CharacterState]; existent { thatPlayerInNextFrame.ActiveSkillId = int32(NO_SKILL) thatPlayerInNextFrame.ActiveSkillHit = int32(NO_SKILL_HIT) } } return &RoomDownsyncFrame{ Id: currRenderFrame.Id + 1, PlayersArr: nextRenderFramePlayers, MeleeBullets: nextRenderFrameMeleeBullets, } } func GenerateRectCollider(wx, wy, w, h, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY float64, data interface{}, tag string) *resolv.Object { blX, blY := WorldToPolygonColliderBLPos(wx, wy, w*0.5, h*0.5, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY) return generateRectColliderInCollisionSpace(blX, blY, leftPadding+w+rightPadding, bottomPadding+h+topPadding, data, tag) } func generateRectColliderInCollisionSpace(blX, blY, w, h float64, data interface{}, tag string) *resolv.Object { collider := resolv.NewObject(blX, blY, w, h, tag) // Unlike its frontend counter part, the position of a "resolv.Object" must be specified by "bottom-left point" because "w" and "h" must be positive, see "resolv.Object.BoundsToSpace" for details shape := resolv.NewRectangle(0, 0, w, h) collider.SetShape(shape) collider.Data = data return collider } func GenerateConvexPolygonCollider(unalignedSrc *Polygon2D, spaceOffsetX, spaceOffsetY float64, data interface{}, tag string) *resolv.Object { aligned := AlignPolygon2DToBoundingBox(unalignedSrc) var w, h float64 = 0, 0 shape := resolv.NewConvexPolygon() for i, pi := range aligned.Points { for j, pj := range aligned.Points { if i == j { continue } if math.Abs(pj.X-pi.X) > w { w = math.Abs(pj.X - pi.X) } if math.Abs(pj.Y-pi.Y) > h { h = math.Abs(pj.Y - pi.Y) } } } for i := 0; i < len(aligned.Points); i++ { p := aligned.Points[i] shape.AddPoints(p.X, p.Y) } collider := resolv.NewObject(aligned.Anchor.X+spaceOffsetX, aligned.Anchor.Y+spaceOffsetY, w, h, tag) collider.SetShape(shape) collider.Data = data return collider } func AlignPolygon2DToBoundingBox(input *Polygon2D) *Polygon2D { // Transform again to put "anchor" at the "bottom-left point (w.r.t. world space)" of the bounding box for "resolv" boundingBoxBL := &Vec2D{ X: MAX_FLOAT64, Y: MAX_FLOAT64, } for _, p := range input.Points { if p.X < boundingBoxBL.X { boundingBoxBL.X = p.X } if p.Y < boundingBoxBL.Y { boundingBoxBL.Y = p.Y } } // Now "input.Anchor" should move to "input.Anchor+boundingBoxBL", thus "boundingBoxBL" is also the value of the negative diff for all "input.Points" output := &Polygon2D{ Anchor: &Vec2D{ X: input.Anchor.X + boundingBoxBL.X, Y: input.Anchor.Y + boundingBoxBL.Y, }, Points: make([]*Vec2D, len(input.Points)), } for i, p := range input.Points { output.Points[i] = &Vec2D{ X: p.X - boundingBoxBL.X, Y: p.Y - boundingBoxBL.Y, } } return output }