DelayNoMore/resolv_tailored/simple_math.go

113 lines
2.2 KiB
Go
Raw Normal View History

2023-03-02 10:22:27 +08:00
package resolv
import "unsafe"
const (
uvnan = 0x7FF8000000000001
uvinf = 0x7FF0000000000000
uvneginf = 0xFFF0000000000000
uvone = 0x3FF0000000000000
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
signMask = 1 << 63
fracMask = 1<<shift - 1
MaxFloat64 = 1.79e+308
magic32 = 0x5f3759df
magic64 = 0x5fe6eb50c7b537a9
)
func Max(a, b float64) float64 {
if a > b {
return a
} else {
return b
}
}
func Min(a, b float64) float64 {
if a < b {
return a
} else {
return b
}
}
func Floor(x float64) float64 {
if x == 0 || IsInf(x, 0) || IsNaN(x) {
return x
}
if x < 0 {
d, fract := Modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := Modf(x)
return d
}
func Modf(f float64) (outval float64, frac float64) {
if f < 1 {
if f < 0 {
outval1, frac1 := Modf(-f)
return -outval1, -frac1
} else if f == 0 {
return f, f // Return -0, -0 when f == -0
}
return 0, f
}
x := Float64bits(f)
e := ((uint)(x>>shift))&mask - bias
// Keep the top 12+e bits, the integer part; clear the rest.
if e < 64-12 {
x &^= 1<<(64-12-e) - 1
}
outval = Float64frombits(x)
frac = f - outval
return
}
func Float32bits(f float32) uint32 { return *(*uint32)(unsafe.Pointer(&f)) }
func Float32frombits(b uint32) float32 { return *(*float32)(unsafe.Pointer(&b)) }
func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
func Float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }
func NaN() float64 { return Float64frombits(uvnan) }
func IsNaN(f float64) (is bool) {
return f != f
}
func IsInf(f float64, sign int) bool {
return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64
}
// FastInvSqrt reference https://medium.com/@adrien.za/fast-inverse-square-root-in-go-and-javascript-for-fun-6b891e74e5a8
func FastInvSqrt32(n float32) float32 {
if n < 0 {
return float32(NaN())
}
n2, th := n*0.5, float32(1.5)
b := Float32bits(n)
b = magic32 - (b >> 1)
f := Float32frombits(b)
f *= th - (n2 * f * f)
return f
}
func FastInvSqrt64(n float64) float64 {
if n < 0 {
return NaN()
}
n2, th := n*0.5, float64(1.5)
b := Float64bits(n)
b = magic64 - (b >> 1)
f := Float64frombits(b)
f *= th - (n2 * f * f)
return f
}