DelayNoMore/dnmshared/resolv_helper.go

270 lines
9.0 KiB
Go
Raw Normal View History

package dnmshared
import (
2022-11-09 06:20:26 +00:00
. "dnmshared/sharedprotos"
"fmt"
"github.com/kvartborg/vector"
"github.com/solarlune/resolv"
"math"
"strings"
)
func ConvexPolygonStr(body *resolv.ConvexPolygon) string {
var s []string = make([]string, len(body.Points))
for i, p := range body.Points {
s[i] = fmt.Sprintf("[%.2f, %.2f]", p[0]+body.X, p[1]+body.Y)
}
return fmt.Sprintf("{\n%s\n}", strings.Join(s, ",\n"))
}
func RectCenterStr(body *resolv.Object, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY float64) string {
return fmt.Sprintf("{%.2f, %.2f}", body.X+leftPadding+halfBoundingW-spaceOffsetX, body.Y+bottomPadding+halfBoundingH-spaceOffsetY)
}
func GenerateRectCollider(wx, wy, w, h, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY float64, tag string) *resolv.Object {
blX, blY := WorldToPolygonColliderBLPos(wx, wy, w*0.5, h*0.5, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY)
return generateRectColliderInCollisionSpace(blX, blY, leftPadding+w+rightPadding, bottomPadding+h+topPadding, tag)
}
func generateRectColliderInCollisionSpace(blX, blY, w, h float64, tag string) *resolv.Object {
2022-12-15 04:28:39 +00:00
collider := resolv.NewObject(blX, blY, w, h, tag) // Unlike its frontend counter part, the position of a "resolv.Object" must be specified by "bottom-left point" because "w" and "h" must be positive, see "resolv.Object.BoundsToSpace" for details
shape := resolv.NewRectangle(0, 0, w, h)
collider.SetShape(shape)
return collider
}
func GenerateConvexPolygonCollider(unalignedSrc *Polygon2D, spaceOffsetX, spaceOffsetY float64, tag string) *resolv.Object {
aligned := AlignPolygon2DToBoundingBox(unalignedSrc)
var w, h float64 = 0, 0
shape := resolv.NewConvexPolygon()
for i, pi := range aligned.Points {
for j, pj := range aligned.Points {
if i == j {
continue
}
if math.Abs(pj.X-pi.X) > w {
w = math.Abs(pj.X - pi.X)
}
if math.Abs(pj.Y-pi.Y) > h {
h = math.Abs(pj.Y - pi.Y)
}
}
}
for i := 0; i < len(aligned.Points); i++ {
p := aligned.Points[i]
shape.AddPoints(p.X, p.Y)
}
collider := resolv.NewObject(aligned.Anchor.X+spaceOffsetX, aligned.Anchor.Y+spaceOffsetY, w, h, tag)
collider.SetShape(shape)
return collider
}
2022-11-12 03:41:18 +00:00
func CalcPushbacks(oldDx, oldDy float64, playerShape, barrierShape *resolv.ConvexPolygon) (bool, float64, float64, *SatResult) {
origX, origY := playerShape.Position()
defer func() {
playerShape.SetPosition(origX, origY)
}()
playerShape.SetPosition(origX+oldDx, origY+oldDy)
2022-12-14 13:30:01 +00:00
overlapResult := &SatResult{
Overlap: 0,
OverlapX: 0,
OverlapY: 0,
AContainedInB: true,
BContainedInA: true,
Axis: vector.Vector{0, 0},
}
2022-12-14 13:30:01 +00:00
if overlapped := isPolygonPairOverlapped(playerShape, barrierShape, overlapResult); overlapped {
pushbackX, pushbackY := overlapResult.Overlap*overlapResult.OverlapX, overlapResult.Overlap*overlapResult.OverlapY
2022-11-12 03:41:18 +00:00
return true, pushbackX, pushbackY, overlapResult
} else {
2022-11-12 03:41:18 +00:00
return false, 0, 0, overlapResult
}
}
type SatResult struct {
Overlap float64
OverlapX float64
OverlapY float64
AContainedInB bool
BContainedInA bool
Axis vector.Vector
}
2022-12-14 13:30:01 +00:00
func isPolygonPairOverlapped(a, b *resolv.ConvexPolygon, result *SatResult) bool {
aCnt, bCnt := len(a.Points), len(b.Points)
// Single point case
if 1 == aCnt && 1 == bCnt {
if nil != result {
result.Overlap = 0
}
2022-12-14 13:30:01 +00:00
return a.Points[0][0] == b.Points[0][0] && a.Points[0][1] == b.Points[0][1]
}
2022-12-14 13:30:01 +00:00
//Logger.Info(fmt.Sprintf("Checking collision between a=%v, b=%v", ConvexPolygonStr(a), ConvexPolygonStr(b)))
if 1 < aCnt {
for _, axis := range a.SATAxes() {
if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) {
return false
}
}
}
if 1 < bCnt {
for _, axis := range b.SATAxes() {
if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) {
return false
}
}
}
2022-12-14 13:30:01 +00:00
//Logger.Info(fmt.Sprintf("a=%v and b=%v are overlapped", ConvexPolygonStr(a), ConvexPolygonStr(b)))
return true
}
func isPolygonPairSeparatedByDir(a, b *resolv.ConvexPolygon, e vector.Vector, result *SatResult) bool {
/*
[WARNING] This function is deliberately made private, it shouldn't be used alone (i.e. not along the norms of a polygon), otherwise the pushbacks calculated would be meaningless.
Consider the following example
a: {
anchor: [1337.19 1696.74]
points: [[0 0] [24 0] [24 24] [0 24]]
},
b: {
anchor: [1277.72 1570.56]
points: [[642.57 319.16] [0 319.16] [5.73 0] [643.75 0.90]]
}
e = (-2.98, 1.49).Unit()
*/
2022-12-14 13:30:01 +00:00
//Logger.Info(fmt.Sprintf("Checking separation between a=%v, b=%v along axis e={%.3f, %.3f}#1", ConvexPolygonStr(a), ConvexPolygonStr(b), e[0], e[1]))
var aStart, aEnd, bStart, bEnd float64 = math.MaxFloat64, -math.MaxFloat64, math.MaxFloat64, -math.MaxFloat64
for _, p := range a.Points {
2022-12-14 13:30:01 +00:00
dot := (p[0]+a.X)*e[0] + (p[1]+a.Y)*e[1]
if aStart > dot {
aStart = dot
}
if aEnd < dot {
aEnd = dot
}
}
for _, p := range b.Points {
2022-12-14 13:30:01 +00:00
dot := (p[0]+b.X)*e[0] + (p[1]+b.Y)*e[1]
if bStart > dot {
bStart = dot
}
if bEnd < dot {
bEnd = dot
}
}
if aStart > bEnd || aEnd < bStart {
// Separated by unit vector "e"
return true
}
if nil != result {
overlap := float64(0)
if aStart < bStart {
result.AContainedInB = false
if aEnd < bEnd {
overlap = aEnd - bStart
result.BContainedInA = false
} else {
option1 := aEnd - bStart
option2 := bEnd - aStart
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
} else {
result.BContainedInA = false
if aEnd > bEnd {
overlap = aStart - bEnd
result.AContainedInB = false
} else {
option1 := aEnd - bStart
option2 := bEnd - aStart
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
}
currentOverlap := result.Overlap
absoluteOverlap := overlap
if overlap < 0 {
absoluteOverlap = -overlap
}
2022-12-14 13:30:01 +00:00
if (0 == result.Axis[0] && 0 == result.Axis[1]) || currentOverlap > absoluteOverlap {
var sign float64 = 1
if overlap < 0 {
sign = -1
}
result.Overlap = absoluteOverlap
2022-12-14 13:30:01 +00:00
result.OverlapX = e[0] * sign
result.OverlapY = e[1] * sign
}
2022-12-14 13:30:01 +00:00
result.Axis = e
//Logger.Info(fmt.Sprintf("Checking separation between a=%v, b=%v along axis e={%.3f, %.3f}#2: aStart=%.3f, aEnd=%.3f, bStart=%.3f, bEnd=%.3f, overlap=%.3f, currentOverlap=%.3f, absoluteOverlap=%.3f, result=%v", ConvexPolygonStr(a), ConvexPolygonStr(b), e[0], e[1], aStart, aEnd, bStart, bEnd, overlap, currentOverlap, absoluteOverlap, result))
}
// the specified unit vector "e" doesn't separate "a" and "b", overlap result is generated
return false
}
func WorldToVirtualGridPos(wx, wy, worldToVirtualGridRatio float64) (int32, int32) {
// [WARNING] Introduces loss of precision!
// In JavaScript floating numbers suffer from seemingly non-deterministic arithmetics, and even if certain libs solved this issue by approaches such as fixed-point-number, they might not be used in other libs -- e.g. the "collision libs" we're interested in -- thus couldn't kill all pains.
var virtualGridX int32 = int32(math.Round(wx * worldToVirtualGridRatio))
var virtualGridY int32 = int32(math.Round(wy * worldToVirtualGridRatio))
return virtualGridX, virtualGridY
}
func VirtualGridToWorldPos(vx, vy int32, virtualGridToWorldRatio float64) (float64, float64) {
// No loss of precision
var wx float64 = float64(vx) * virtualGridToWorldRatio
var wy float64 = float64(vy) * virtualGridToWorldRatio
return wx, wy
}
func WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) {
return wx - halfBoundingW - leftPadding + collisionSpaceOffsetX, wy - halfBoundingH - bottomPadding + collisionSpaceOffsetY
}
func PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) {
return cx + halfBoundingW + leftPadding - collisionSpaceOffsetX, cy + halfBoundingH + bottomPadding - collisionSpaceOffsetY
}
func PolygonColliderBLToVirtualGridPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64, worldToVirtualGridRatio float64) (int32, int32) {
wx, wy := PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY)
return WorldToVirtualGridPos(wx, wy, worldToVirtualGridRatio)
}
func VirtualGridToPolygonColliderBLPos(vx, vy int32, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64, virtualGridToWorldRatio float64) (float64, float64) {
wx, wy := VirtualGridToWorldPos(vx, vy, virtualGridToWorldRatio)
return WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY)
}