DelayNoMore/jsexport/battle/battle.go

825 lines
32 KiB
Go
Raw Normal View History

2022-12-25 06:18:48 +00:00
package battle
2022-12-23 14:31:55 +00:00
import (
2022-12-25 06:18:48 +00:00
"math"
"resolv"
2022-12-23 14:31:55 +00:00
)
const (
2022-12-25 06:18:48 +00:00
MAX_FLOAT64 = 1.7e+308
MAX_INT32 = int32(999999999)
2022-12-23 14:31:55 +00:00
COLLISION_PLAYER_INDEX_PREFIX = (1 << 17)
COLLISION_BARRIER_INDEX_PREFIX = (1 << 16)
COLLISION_BULLET_INDEX_PREFIX = (1 << 15)
PATTERN_ID_UNABLE_TO_OP = -2
PATTERN_ID_NO_OP = -1
WORLD_TO_VIRTUAL_GRID_RATIO = float64(100)
VIRTUAL_GRID_TO_WORLD_RATIO = float64(1.0) / WORLD_TO_VIRTUAL_GRID_RATIO
GRAVITY_X = int32(0)
GRAVITY_Y = -int32(float64(0.5) * WORLD_TO_VIRTUAL_GRID_RATIO) // makes all "playerCollider.Y" a multiple of 0.5 in all cases
INPUT_DELAY_FRAMES = int32(8) // in the count of render frames
INPUT_SCALE_FRAMES = uint32(2) // inputDelayedAndScaledFrameId = ((originalFrameId - InputDelayFrames) >> InputScaleFrames)
NST_DELAY_FRAMES = int32(16) // network-single-trip delay in the count of render frames, proposed to be (InputDelayFrames >> 1) because we expect a round-trip delay to be exactly "InputDelayFrames"
SNAP_INTO_PLATFORM_OVERLAP = float64(0.1)
SNAP_INTO_PLATFORM_THRESHOLD = float64(0.5)
2023-01-01 14:51:46 +00:00
NO_SKILL = -1
NO_SKILL_HIT = -1
2022-12-23 14:31:55 +00:00
)
// These directions are chosen such that when speed is changed to "(speedX+delta, speedY+delta)" for any of them, the direction is unchanged.
var DIRECTION_DECODER = [][]int32{
{0, 0},
{0, +2},
{0, -2},
{+2, 0},
{-2, 0},
{+1, +1},
{-1, -1},
{+1, -1},
{-1, +1},
}
const (
ATK_CHARACTER_STATE_IDLE1 = int32(0)
ATK_CHARACTER_STATE_WALKING = int32(1)
ATK_CHARACTER_STATE_ATK1 = int32(2)
ATK_CHARACTER_STATE_ATKED1 = int32(3)
ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP = int32(4)
ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP = int32(5)
ATK_CHARACTER_STATE_INAIR_ATK1 = int32(6)
ATK_CHARACTER_STATE_INAIR_ATKED1 = int32(7)
ATK_CHARACTER_STATE_BLOWN_UP1 = int32(8)
ATK_CHARACTER_STATE_LAY_DOWN1 = int32(9)
ATK_CHARACTER_STATE_GET_UP1 = int32(10)
ATK_CHARACTER_STATE_ATK2 = int32(11)
ATK_CHARACTER_STATE_ATK3 = int32(12)
2022-12-23 14:31:55 +00:00
)
var inAirSet = map[int32]bool{
ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP: true,
ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP: true,
ATK_CHARACTER_STATE_INAIR_ATK1: true,
ATK_CHARACTER_STATE_INAIR_ATKED1: true,
ATK_CHARACTER_STATE_BLOWN_UP1: true,
}
var noOpSet = map[int32]bool{
ATK_CHARACTER_STATE_ATKED1: true,
ATK_CHARACTER_STATE_INAIR_ATKED1: true,
ATK_CHARACTER_STATE_BLOWN_UP1: true,
ATK_CHARACTER_STATE_LAY_DOWN1: true,
// During the invinsible frames of GET_UP1, the player is allowed to take any action
}
var invinsibleSet = map[int32]bool{
ATK_CHARACTER_STATE_BLOWN_UP1: true,
ATK_CHARACTER_STATE_LAY_DOWN1: true,
ATK_CHARACTER_STATE_GET_UP1: true,
}
var nonAttackingSet = map[int32]bool{}
func ShouldPrefabInputFrameDownsync(prevRenderFrameId int32, renderFrameId int32) (bool, int32) {
for i := prevRenderFrameId + 1; i <= renderFrameId; i++ {
if (0 <= i) && (0 == (i & ((1 << INPUT_SCALE_FRAMES) - 1))) {
return true, i
}
}
return false, -1
}
func ShouldGenerateInputFrameUpsync(renderFrameId int32) bool {
return ((renderFrameId & ((1 << INPUT_SCALE_FRAMES) - 1)) == 0)
}
func ConvertToDelayedInputFrameId(renderFrameId int32) int32 {
if renderFrameId < INPUT_DELAY_FRAMES {
2022-12-23 14:31:55 +00:00
return 0
}
return ((renderFrameId - INPUT_DELAY_FRAMES) >> INPUT_SCALE_FRAMES)
}
func ConvertToNoDelayInputFrameId(renderFrameId int32) int32 {
return (renderFrameId >> INPUT_SCALE_FRAMES)
}
func ConvertToFirstUsedRenderFrameId(inputFrameId int32) int32 {
return ((inputFrameId << INPUT_SCALE_FRAMES) + INPUT_DELAY_FRAMES)
}
func ConvertToLastUsedRenderFrameId(inputFrameId int32) int32 {
return ((inputFrameId << INPUT_SCALE_FRAMES) + INPUT_DELAY_FRAMES + (1 << INPUT_SCALE_FRAMES) - 1)
2022-12-23 14:31:55 +00:00
}
func decodeInput(encodedInput uint64) *InputFrameDecoded {
2022-12-23 14:31:55 +00:00
encodedDirection := (encodedInput & uint64(15))
btnALevel := int32((encodedInput >> 4) & 1)
btnBLevel := int32((encodedInput >> 5) & 1)
return &InputFrameDecoded{
Dx: DIRECTION_DECODER[encodedDirection][0],
Dy: DIRECTION_DECODER[encodedDirection][1],
BtnALevel: btnALevel,
BtnBLevel: btnBLevel,
}
}
2022-12-25 06:18:48 +00:00
type SatResult struct {
Overlap float64
OverlapX float64
OverlapY float64
AContainedInB bool
BContainedInA bool
Axis resolv.Vector
2022-12-25 06:18:48 +00:00
}
func CalcPushbacks(oldDx, oldDy float64, playerShape, barrierShape *resolv.ConvexPolygon) (bool, float64, float64, *SatResult) {
origX, origY := playerShape.Position()
defer func() {
playerShape.SetPosition(origX, origY)
}()
playerShape.SetPosition(origX+oldDx, origY+oldDy)
overlapResult := &SatResult{
Overlap: 0,
OverlapX: 0,
OverlapY: 0,
AContainedInB: true,
BContainedInA: true,
Axis: resolv.Vector{0, 0},
2022-12-25 06:18:48 +00:00
}
if overlapped := isPolygonPairOverlapped(playerShape, barrierShape, overlapResult); overlapped {
pushbackX, pushbackY := overlapResult.Overlap*overlapResult.OverlapX, overlapResult.Overlap*overlapResult.OverlapY
return true, pushbackX, pushbackY, overlapResult
} else {
return false, 0, 0, overlapResult
}
}
func isPolygonPairOverlapped(a, b *resolv.ConvexPolygon, result *SatResult) bool {
aCnt, bCnt := len(a.Points), len(b.Points)
// Single point case
if 1 == aCnt && 1 == bCnt {
if nil != result {
result.Overlap = 0
}
return a.Points[0][0] == b.Points[0][0] && a.Points[0][1] == b.Points[0][1]
}
if 1 < aCnt {
for _, axis := range a.SATAxes() {
if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) {
return false
}
}
}
if 1 < bCnt {
for _, axis := range b.SATAxes() {
if isPolygonPairSeparatedByDir(a, b, axis.Unit(), result) {
return false
}
}
}
return true
}
func isPolygonPairSeparatedByDir(a, b *resolv.ConvexPolygon, e resolv.Vector, result *SatResult) bool {
2022-12-25 06:18:48 +00:00
/*
[WARNING] This function is deliberately made private, it shouldn't be used alone (i.e. not along the norms of a polygon), otherwise the pushbacks calculated would be meaningless.
Consider the following example
a: {
anchor: [1337.19 1696.74]
points: [[0 0] [24 0] [24 24] [0 24]]
},
b: {
anchor: [1277.72 1570.56]
points: [[642.57 319.16] [0 319.16] [5.73 0] [643.75 0.90]]
}
e = (-2.98, 1.49).Unit()
*/
var aStart, aEnd, bStart, bEnd float64 = MAX_FLOAT64, -MAX_FLOAT64, MAX_FLOAT64, -MAX_FLOAT64
for _, p := range a.Points {
dot := (p[0]+a.X)*e[0] + (p[1]+a.Y)*e[1]
if aStart > dot {
aStart = dot
}
if aEnd < dot {
aEnd = dot
}
}
for _, p := range b.Points {
dot := (p[0]+b.X)*e[0] + (p[1]+b.Y)*e[1]
if bStart > dot {
bStart = dot
}
if bEnd < dot {
bEnd = dot
}
}
if aStart > bEnd || aEnd < bStart {
// Separated by unit vector "e"
return true
}
if nil != result {
overlap := float64(0)
if aStart < bStart {
result.AContainedInB = false
if aEnd < bEnd {
overlap = aEnd - bStart
result.BContainedInA = false
} else {
option1 := aEnd - bStart
option2 := bEnd - aStart
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
} else {
result.BContainedInA = false
if aEnd > bEnd {
overlap = aStart - bEnd
result.AContainedInB = false
} else {
option1 := aEnd - bStart
option2 := bEnd - aStart
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
}
currentOverlap := result.Overlap
absoluteOverlap := overlap
if overlap < 0 {
absoluteOverlap = -overlap
}
if (0 == result.Axis[0] && 0 == result.Axis[1]) || currentOverlap > absoluteOverlap {
var sign float64 = 1
if overlap < 0 {
sign = -1
}
result.Overlap = absoluteOverlap
result.OverlapX = e[0] * sign
result.OverlapY = e[1] * sign
}
result.Axis = e
}
// the specified unit vector "e" doesn't separate "a" and "b", overlap result is generated
return false
}
func WorldToVirtualGridPos(wx, wy float64) (int32, int32) {
2022-12-25 06:18:48 +00:00
// [WARNING] Introduces loss of precision!
// In JavaScript floating numbers suffer from seemingly non-deterministic arithmetics, and even if certain libs solved this issue by approaches such as fixed-point-number, they might not be used in other libs -- e.g. the "collision libs" we're interested in -- thus couldn't kill all pains.
var virtualGridX int32 = int32(math.Floor(wx * WORLD_TO_VIRTUAL_GRID_RATIO))
var virtualGridY int32 = int32(math.Floor(wy * WORLD_TO_VIRTUAL_GRID_RATIO))
2022-12-25 06:18:48 +00:00
return virtualGridX, virtualGridY
}
func VirtualGridToWorldPos(vx, vy int32) (float64, float64) {
2022-12-25 06:18:48 +00:00
// No loss of precision
var wx float64 = float64(vx) * VIRTUAL_GRID_TO_WORLD_RATIO
var wy float64 = float64(vy) * VIRTUAL_GRID_TO_WORLD_RATIO
2022-12-25 06:18:48 +00:00
return wx, wy
}
func WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) {
return wx - halfBoundingW - leftPadding + collisionSpaceOffsetX, wy - halfBoundingH - bottomPadding + collisionSpaceOffsetY
}
func PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) {
return cx + halfBoundingW + leftPadding - collisionSpaceOffsetX, cy + halfBoundingH + bottomPadding - collisionSpaceOffsetY
}
func PolygonColliderBLToVirtualGridPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (int32, int32) {
2022-12-25 06:18:48 +00:00
wx, wy := PolygonColliderBLToWorldPos(cx, cy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY)
return WorldToVirtualGridPos(wx, wy)
2022-12-25 06:18:48 +00:00
}
func VirtualGridToPolygonColliderBLPos(vx, vy int32, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY float64) (float64, float64) {
wx, wy := VirtualGridToWorldPos(vx, vy)
2022-12-25 06:18:48 +00:00
return WorldToPolygonColliderBLPos(wx, wy, halfBoundingW, halfBoundingH, topPadding, bottomPadding, leftPadding, rightPadding, collisionSpaceOffsetX, collisionSpaceOffsetY)
}
func calcHardPushbacksNorms(joinIndex int32, playerCollider *resolv.Object, playerShape *resolv.ConvexPolygon, snapIntoPlatformOverlap float64, pEffPushback *Vec2D) *[]Vec2D {
2022-12-23 14:31:55 +00:00
ret := make([]Vec2D, 0, 10) // no one would simultaneously have more than 5 hardPushbacks
collision := playerCollider.Check(0, 0)
if nil == collision {
return &ret
2022-12-23 14:31:55 +00:00
}
//playerColliderCenterX, playerColliderCenterY := playerCollider.Center()
//fmt.Printf("joinIndex=%d calcHardPushbacksNorms has non-empty collision;playerColliderPos=(%.2f,%.2f)\n", joinIndex, playerColliderCenterX, playerColliderCenterY)
2022-12-23 14:31:55 +00:00
for _, obj := range collision.Objects {
isBarrier := false
2022-12-23 14:31:55 +00:00
switch obj.Data.(type) {
case *PlayerDownsync:
case *MeleeBullet:
2022-12-23 14:31:55 +00:00
default:
// By default it's a regular barrier, even if data is nil, note that Golang syntax of switch-case is kind of confusing, this "default" condition is met only if "!*PlayerDownsync && !*MeleeBullet".
isBarrier = true
}
if !isBarrier {
continue
}
barrierShape := obj.Shape.(*resolv.ConvexPolygon)
overlapped, pushbackX, pushbackY, overlapResult := CalcPushbacks(0, 0, playerShape, barrierShape)
if !overlapped {
continue
2022-12-23 14:31:55 +00:00
}
// ALWAY snap into hardPushbacks!
// [OverlapX, OverlapY] is the unit vector that points into the platform
pushbackX, pushbackY = (overlapResult.Overlap-snapIntoPlatformOverlap)*overlapResult.OverlapX, (overlapResult.Overlap-snapIntoPlatformOverlap)*overlapResult.OverlapY
ret = append(ret, Vec2D{X: overlapResult.OverlapX, Y: overlapResult.OverlapY})
pEffPushback.X += pushbackX
pEffPushback.Y += pushbackY
//fmt.Printf("joinIndex=%d calcHardPushbacksNorms found one hardpushback; immediatePushback=(%.2f,%.2f)\n", joinIndex, pushbackX, pushbackY)
2022-12-23 14:31:55 +00:00
}
return &ret
2022-12-23 14:31:55 +00:00
}
func deriveOpPattern(currPlayerDownsync, thatPlayerInNextFrame *PlayerDownsync, currRenderFrame *RoomDownsyncFrame, inputsBuffer *RingBuffer) (int, bool, int32, int32) {
// returns (patternId, jumpedOrNot, effectiveDx, effectiveDy)
delayedInputFrameId := ConvertToDelayedInputFrameId(currRenderFrame.Id)
delayedInputFrameIdForPrevRdf := ConvertToDelayedInputFrameId(currRenderFrame.Id-1)
if 0 >= delayedInputFrameId {
return PATTERN_ID_UNABLE_TO_OP, false, 0, 0
}
if _, existent := noOpSet[currPlayerDownsync.CharacterState]; existent {
return PATTERN_ID_UNABLE_TO_OP, false, 0, 0
}
delayedInputList := inputsBuffer.GetByFrameId(delayedInputFrameId).(*InputFrameDownsync).InputList
var delayedInputListForPrevRdf []uint64 = nil
if 0 < delayedInputFrameIdForPrevRdf {
delayedInputListForPrevRdf = inputsBuffer.GetByFrameId(delayedInputFrameIdForPrevRdf).(*InputFrameDownsync).InputList
}
jumpedOrNot := false
joinIndex := currPlayerDownsync.JoinIndex
decodedInput := decodeInput(delayedInputList[joinIndex-1])
effDx, effDy := int32(0), int32(0)
prevBtnALevel, prevBtnBLevel := int32(0), int32(0)
if nil != delayedInputListForPrevRdf {
prevDecodedInput := decodeInput(delayedInputListForPrevRdf[joinIndex-1])
prevBtnALevel = prevDecodedInput.BtnALevel
prevBtnBLevel = prevDecodedInput.BtnBLevel
}
if 0 == currPlayerDownsync.FramesToRecover {
// Jumping and moving are only allowed here
effDx, effDy = decodedInput.Dx, decodedInput.Dy
if decodedInput.BtnBLevel > prevBtnBLevel {
if _, existent := inAirSet[currPlayerDownsync.CharacterState]; !existent {
jumpedOrNot = true
}
}
}
patternId := PATTERN_ID_NO_OP
if decodedInput.BtnALevel > prevBtnALevel {
2023-01-01 14:51:46 +00:00
patternId = 1
}
return patternId, jumpedOrNot, effDx, effDy
}
// [WARNING] The params of this method is carefully tuned such that only "battle.RoomDownsyncFrame" is a necessary custom struct.
func ApplyInputFrameDownsyncDynamicsOnSingleRenderFrame(inputsBuffer *RingBuffer, currRenderFrame *RoomDownsyncFrame, collisionSys *resolv.Space, collisionSysMap map[int32]*resolv.Object, collisionSpaceOffsetX, collisionSpaceOffsetY float64, chConfigsOrderedByJoinIndex []*CharacterConfig) *RoomDownsyncFrame {
// [WARNING] On backend this function MUST BE called while "InputsBufferLock" is locked!
roomCapacity := len(currRenderFrame.PlayersArr)
2022-12-23 14:31:55 +00:00
nextRenderFramePlayers := make([]*PlayerDownsync, roomCapacity)
// Make a copy first
for i, currPlayerDownsync := range currRenderFrame.PlayersArr {
nextRenderFramePlayers[i] = &PlayerDownsync{
Id: currPlayerDownsync.Id,
VirtualGridX: currPlayerDownsync.VirtualGridX,
VirtualGridY: currPlayerDownsync.VirtualGridY,
DirX: currPlayerDownsync.DirX,
DirY: currPlayerDownsync.DirY,
VelX: currPlayerDownsync.VelX,
VelY: currPlayerDownsync.VelY,
CharacterState: currPlayerDownsync.CharacterState,
InAir: true,
Speed: currPlayerDownsync.Speed,
BattleState: currPlayerDownsync.BattleState,
Score: currPlayerDownsync.Score,
Removed: currPlayerDownsync.Removed,
JoinIndex: currPlayerDownsync.JoinIndex,
Hp: currPlayerDownsync.Hp,
MaxHp: currPlayerDownsync.MaxHp,
FramesToRecover: currPlayerDownsync.FramesToRecover - 1,
FramesInChState: currPlayerDownsync.FramesInChState + 1,
ActiveSkillId: currPlayerDownsync.ActiveSkillId,
ActiveSkillHit: currPlayerDownsync.ActiveSkillHit,
2023-01-02 08:36:17 +00:00
ColliderRadius: currPlayerDownsync.ColliderRadius,
2022-12-23 14:31:55 +00:00
}
if nextRenderFramePlayers[i].FramesToRecover < 0 {
nextRenderFramePlayers[i].FramesToRecover = 0
}
}
nextRenderFrameMeleeBullets := make([]*MeleeBullet, 0, len(currRenderFrame.MeleeBullets)) // Is there any better way to reduce malloc/free impact, e.g. smart prediction for fixed memory allocation?
2022-12-23 14:31:55 +00:00
effPushbacks := make([]Vec2D, roomCapacity)
hardPushbackNorms := make([]*[]Vec2D, roomCapacity)
jumpedOrNotList := make([]bool, roomCapacity)
2022-12-23 14:31:55 +00:00
// 1. Process player inputs
for i, currPlayerDownsync := range currRenderFrame.PlayersArr {
jumpedOrNotList[i] = false
chConfig := chConfigsOrderedByJoinIndex[i]
thatPlayerInNextFrame := nextRenderFramePlayers[i]
patternId, jumpedOrNot, effDx, effDy := deriveOpPattern(currPlayerDownsync, thatPlayerInNextFrame, currRenderFrame, inputsBuffer)
2022-12-23 14:31:55 +00:00
if jumpedOrNot {
thatPlayerInNextFrame.VelY = int32(chConfig.JumpingInitVelY)
jumpedOrNotList[i] = true
}
joinIndex := currPlayerDownsync.JoinIndex
2023-01-01 14:51:46 +00:00
skillId := chConfig.SkillMapper(patternId, currPlayerDownsync)
if skillConfig, existent := skills[skillId]; existent {
thatPlayerInNextFrame.ActiveSkillId = int32(skillId)
thatPlayerInNextFrame.ActiveSkillHit = 0
// TODO: Respect non-zero "selfLockVel"
// Hardcoded to use only the first hit for now
switch v := skillConfig.Hits[thatPlayerInNextFrame.ActiveSkillHit].(type) {
case *MeleeBullet:
var newBullet MeleeBullet = *v // Copied primitive fields into an onstack variable
newBullet.OriginatedRenderFrameId = currRenderFrame.Id
newBullet.OffenderJoinIndex = joinIndex
nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, &newBullet)
thatPlayerInNextFrame.FramesToRecover = skillConfig.RecoveryFrames
}
2023-01-01 14:51:46 +00:00
thatPlayerInNextFrame.CharacterState = skillConfig.BoundChState
if false == currPlayerDownsync.InAir {
thatPlayerInNextFrame.VelX = 0
2022-12-23 14:31:55 +00:00
}
2023-01-01 14:51:46 +00:00
continue // Don't allow movement if skill is used
}
2022-12-23 14:31:55 +00:00
if 0 == currPlayerDownsync.FramesToRecover {
if 0 != effDx || 0 != effDy {
thatPlayerInNextFrame.DirX, thatPlayerInNextFrame.DirY = effDx, effDy
thatPlayerInNextFrame.VelX = effDx * currPlayerDownsync.Speed
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_WALKING
} else {
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1
thatPlayerInNextFrame.VelX = 0
}
2022-12-23 14:31:55 +00:00
}
}
// 2. Process player movement
2023-01-02 08:36:17 +00:00
playerColliders := make([]*resolv.Object, len(currRenderFrame.PlayersArr), len(currRenderFrame.PlayersArr)) // Will all be removed at the end of this function due to the need for being rollback-compatible
2022-12-23 14:31:55 +00:00
for i, currPlayerDownsync := range currRenderFrame.PlayersArr {
joinIndex := currPlayerDownsync.JoinIndex
effPushbacks[joinIndex-1].X, effPushbacks[joinIndex-1].Y = float64(0), float64(0)
2023-01-02 08:36:17 +00:00
chConfig := chConfigsOrderedByJoinIndex[i]
2022-12-23 14:31:55 +00:00
// Reset playerCollider position from the "virtual grid position"
newVx, newVy := currPlayerDownsync.VirtualGridX+currPlayerDownsync.VelX, currPlayerDownsync.VirtualGridY+currPlayerDownsync.VelY
if jumpedOrNotList[i] {
newVy += chConfig.JumpingInitVelY // Immediately gets out of any snapping
}
2022-12-23 14:31:55 +00:00
2023-01-02 08:36:17 +00:00
wx, wy := VirtualGridToWorldPos(newVx, newVy)
colliderWidth, colliderHeight := currPlayerDownsync.ColliderRadius*2, currPlayerDownsync.ColliderRadius*4
switch currPlayerDownsync.CharacterState {
case ATK_CHARACTER_STATE_LAY_DOWN1:
colliderWidth, colliderHeight = currPlayerDownsync.ColliderRadius*4, currPlayerDownsync.ColliderRadius*2
case ATK_CHARACTER_STATE_BLOWN_UP1, ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP, ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP:
colliderWidth, colliderHeight = currPlayerDownsync.ColliderRadius*2, currPlayerDownsync.ColliderRadius*2
}
colliderWorldWidth, colliderWorldHeight := VirtualGridToWorldPos(colliderWidth, colliderHeight)
playerCollider := GenerateRectCollider(wx, wy, colliderWorldWidth, colliderWorldHeight, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, collisionSpaceOffsetX, collisionSpaceOffsetY, currPlayerDownsync, "Player") // the coords of all barrier boundaries are multiples of tileWidth(i.e. 16), by adding snapping y-padding when "landedOnGravityPushback" all "playerCollider.Y" would be a multiple of 1.0
playerColliders[i] = playerCollider
2022-12-23 14:31:55 +00:00
2023-01-02 08:36:17 +00:00
// Add to collision system
collisionSys.Add(playerCollider)
thatPlayerInNextFrame := nextRenderFramePlayers[i]
2022-12-23 14:31:55 +00:00
if currPlayerDownsync.InAir {
thatPlayerInNextFrame.VelX += GRAVITY_X
thatPlayerInNextFrame.VelY += GRAVITY_Y
2022-12-23 14:31:55 +00:00
}
}
// 3. Add bullet colliders into collision system
bulletColliders := make([]*resolv.Object, 0, len(currRenderFrame.MeleeBullets)) // Will all be removed at the end of this function due to the need for being rollback-compatible
for _, meleeBullet := range currRenderFrame.MeleeBullets {
if (meleeBullet.OriginatedRenderFrameId+meleeBullet.StartupFrames <= currRenderFrame.Id) && (meleeBullet.OriginatedRenderFrameId+meleeBullet.StartupFrames+meleeBullet.ActiveFrames > currRenderFrame.Id) {
offender := currRenderFrame.PlayersArr[meleeBullet.OffenderJoinIndex-1]
xfac := int32(1) // By now, straight Punch offset doesn't respect "y-axis"
if 0 > offender.DirX {
xfac = -xfac
}
bulletWx, bulletWy := VirtualGridToWorldPos(offender.VirtualGridX+xfac*meleeBullet.HitboxOffsetX, offender.VirtualGridY)
hitboxSizeWx, hitboxSizeWy := VirtualGridToWorldPos(meleeBullet.HitboxSizeX, meleeBullet.HitboxSizeY)
newBulletCollider := GenerateRectCollider(bulletWx, bulletWy, hitboxSizeWx, hitboxSizeWy, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, SNAP_INTO_PLATFORM_OVERLAP, collisionSpaceOffsetX, collisionSpaceOffsetY, meleeBullet, "MeleeBullet")
collisionSys.Add(newBulletCollider)
bulletColliders = append(bulletColliders, newBulletCollider)
} else {
nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, meleeBullet)
}
}
// 4. Calc pushbacks for each player (after its movement) w/o bullets
2022-12-23 14:31:55 +00:00
for i, currPlayerDownsync := range currRenderFrame.PlayersArr {
joinIndex := currPlayerDownsync.JoinIndex
2023-01-02 08:36:17 +00:00
playerCollider := playerColliders[i]
2022-12-23 14:31:55 +00:00
playerShape := playerCollider.Shape.(*resolv.ConvexPolygon)
hardPushbackNorms[joinIndex-1] = calcHardPushbacksNorms(joinIndex, playerCollider, playerShape, SNAP_INTO_PLATFORM_OVERLAP, &(effPushbacks[joinIndex-1]))
2022-12-23 14:31:55 +00:00
thatPlayerInNextFrame := nextRenderFramePlayers[i]
chConfig := chConfigsOrderedByJoinIndex[i]
landedOnGravityPushback := false
2022-12-23 14:31:55 +00:00
if collision := playerCollider.Check(0, 0); nil != collision {
for _, obj := range collision.Objects {
isBarrier, isAnotherPlayer, isBullet := false, false, false
switch obj.Data.(type) {
case *PlayerDownsync:
isAnotherPlayer = true
case *MeleeBullet:
isBullet = true
default:
// By default it's a regular barrier, even if data is nil
isBarrier = true
2022-12-23 14:31:55 +00:00
}
if isBullet {
// ignore bullets for this step
continue
}
bShape := obj.Shape.(*resolv.ConvexPolygon)
overlapped, pushbackX, pushbackY, overlapResult := CalcPushbacks(0, 0, playerShape, bShape)
if !overlapped {
continue
}
normAlignmentWithGravity := (overlapResult.OverlapX*float64(0) + overlapResult.OverlapY*float64(-1.0))
if isAnotherPlayer {
// [WARNING] The "zero overlap collision" might be randomly detected/missed on either frontend or backend, to have deterministic result we added paddings to all sides of a playerCollider. As each velocity component of (velX, velY) being a multiple of 0.5 at any renderFrame, each position component of (x, y) can only be a multiple of 0.5 too, thus whenever a 1-dimensional collision happens between players from [player#1: i*0.5, player#2: j*0.5, not collided yet] to [player#1: (i+k)*0.5, player#2: j*0.5, collided], the overlap becomes (i+k-j)*0.5+2*s, and after snapping subtraction the effPushback magnitude for each player is (i+k-j)*0.5, resulting in 0.5-multiples-position for the next renderFrame.
pushbackX, pushbackY = (overlapResult.Overlap-SNAP_INTO_PLATFORM_OVERLAP*2)*overlapResult.OverlapX, (overlapResult.Overlap-SNAP_INTO_PLATFORM_OVERLAP*2)*overlapResult.OverlapY
2022-12-23 14:31:55 +00:00
}
for _, hardPushbackNorm := range *hardPushbackNorms[joinIndex-1] {
2022-12-23 14:31:55 +00:00
projectedMagnitude := pushbackX*hardPushbackNorm.X + pushbackY*hardPushbackNorm.Y
if isBarrier || (isAnotherPlayer && 0 > projectedMagnitude) {
pushbackX -= projectedMagnitude * hardPushbackNorm.X
pushbackY -= projectedMagnitude * hardPushbackNorm.Y
}
}
effPushbacks[joinIndex-1].X += pushbackX
effPushbacks[joinIndex-1].Y += pushbackY
if SNAP_INTO_PLATFORM_THRESHOLD < normAlignmentWithGravity {
landedOnGravityPushback = true
//playerColliderCenterX, playerColliderCenterY := playerCollider.Center()
//fmt.Printf("joinIndex=%d landedOnGravityPushback\n{renderFrame.id: %d, isBarrier: %v, isAnotherPlayer: %v}\nhardPushbackNormsOfThisPlayer=%v, playerColliderPos=(%.2f,%.2f), immediatePushback={%.3f, %.3f}, effPushback={%.3f, %.3f}, overlapMag=%.4f\n", joinIndex, currRenderFrame.Id, isBarrier, isAnotherPlayer, *hardPushbackNorms[joinIndex-1], playerColliderCenterX, playerColliderCenterY, pushbackX, pushbackY, effPushbacks[joinIndex-1].X, effPushbacks[joinIndex-1].Y, overlapResult.Overlap)
2022-12-23 14:31:55 +00:00
}
}
}
if landedOnGravityPushback {
thatPlayerInNextFrame.InAir = false
2022-12-29 04:36:57 +00:00
if currPlayerDownsync.InAir && 0 >= currPlayerDownsync.VelY {
// fallStopping
thatPlayerInNextFrame.VelX = 0
thatPlayerInNextFrame.VelY = 0
if ATK_CHARACTER_STATE_BLOWN_UP1 == thatPlayerInNextFrame.CharacterState {
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_LAY_DOWN1
thatPlayerInNextFrame.FramesToRecover = chConfig.LayDownFramesToRecover
} else {
2023-01-02 08:36:17 +00:00
halfColliderWidthDiff, halfColliderHeightDiff := int32(0), currPlayerDownsync.ColliderRadius
_, halfColliderWorldHeightDiff := VirtualGridToWorldPos(halfColliderWidthDiff, halfColliderHeightDiff)
effPushbacks[joinIndex-1].Y -= halfColliderWorldHeightDiff // To prevent bouncing due to abrupt change of collider shape
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1
thatPlayerInNextFrame.FramesToRecover = 0
}
} else {
// not fallStopping, could be in LayDown or GetUp
if ATK_CHARACTER_STATE_LAY_DOWN1 == thatPlayerInNextFrame.CharacterState {
if 0 == thatPlayerInNextFrame.FramesToRecover {
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_GET_UP1
thatPlayerInNextFrame.FramesToRecover = chConfig.GetUpFramesToRecover
}
} else if ATK_CHARACTER_STATE_GET_UP1 == thatPlayerInNextFrame.CharacterState {
if thatPlayerInNextFrame.FramesInChState == chConfig.GetUpFrames {
// [WARNING] Before reaching here, the player had 3 invinsible frames to either attack or jump, if it ever took any action then this condition wouldn't have been met, thus we hereby only transit it back to IDLE as it took no action
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_IDLE1
}
}
2022-12-23 14:31:55 +00:00
}
}
}
// 5. Check bullet-anything collisions
for _, bulletCollider := range bulletColliders {
collision := bulletCollider.Check(0, 0)
bulletCollider.Space.Remove(bulletCollider) // Make sure that the bulletCollider is always removed for each renderFrame
switch v := bulletCollider.Data.(type) {
case *MeleeBullet:
if nil == collision {
nextRenderFrameMeleeBullets = append(nextRenderFrameMeleeBullets, v)
continue
}
bulletShape := bulletCollider.Shape.(*resolv.ConvexPolygon)
offender := currRenderFrame.PlayersArr[v.OffenderJoinIndex-1]
for _, obj := range collision.Objects {
defenderShape := obj.Shape.(*resolv.ConvexPolygon)
switch t := obj.Data.(type) {
case *PlayerDownsync:
if v.OffenderJoinIndex == t.JoinIndex {
continue
}
if _, existent := invinsibleSet[t.CharacterState]; existent {
continue
}
overlapped, _, _, _ := CalcPushbacks(0, 0, bulletShape, defenderShape)
if !overlapped {
continue
}
xfac := int32(1) // By now, straight Punch offset doesn't respect "y-axis"
if 0 > offender.DirX {
xfac = -xfac
}
pushbackVelX, pushbackVelY := xfac*v.PushbackVelX, v.PushbackVelY
atkedPlayerInNextFrame := nextRenderFramePlayers[t.JoinIndex-1]
atkedPlayerInNextFrame.VelX = pushbackVelX
atkedPlayerInNextFrame.VelY = pushbackVelY
if v.BlowUp {
atkedPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_BLOWN_UP1
} else {
atkedPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_ATKED1
}
oldFramesToRecover := nextRenderFramePlayers[t.JoinIndex-1].FramesToRecover
if v.HitStunFrames > oldFramesToRecover {
atkedPlayerInNextFrame.FramesToRecover = v.HitStunFrames
}
default:
}
}
}
}
// 6. Get players out of stuck barriers if there's any
2022-12-23 14:31:55 +00:00
for i, currPlayerDownsync := range currRenderFrame.PlayersArr {
joinIndex := currPlayerDownsync.JoinIndex
2023-01-02 08:36:17 +00:00
playerCollider := playerColliders[i]
2022-12-23 14:31:55 +00:00
// Update "virtual grid position"
thatPlayerInNextFrame := nextRenderFramePlayers[i]
thatPlayerInNextFrame.VirtualGridX, thatPlayerInNextFrame.VirtualGridY = PolygonColliderBLToVirtualGridPos(playerCollider.X-effPushbacks[joinIndex-1].X, playerCollider.Y-effPushbacks[joinIndex-1].Y, playerCollider.W*0.5, playerCollider.H*0.5, 0, 0, 0, 0, collisionSpaceOffsetX, collisionSpaceOffsetY)
// Update "CharacterState"
if thatPlayerInNextFrame.InAir {
oldNextCharacterState := thatPlayerInNextFrame.CharacterState
switch oldNextCharacterState {
case ATK_CHARACTER_STATE_IDLE1, ATK_CHARACTER_STATE_WALKING:
if jumpedOrNotList[i] || ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP == currPlayerDownsync.CharacterState {
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_IDLE1_BY_JUMP
} else {
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_IDLE1_NO_JUMP
}
case ATK_CHARACTER_STATE_ATK1:
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_ATK1
// No inAir transition for ATK2/ATK3 for now
case ATK_CHARACTER_STATE_ATKED1:
thatPlayerInNextFrame.CharacterState = ATK_CHARACTER_STATE_INAIR_ATKED1
}
}
// Reset "FramesInChState" if "CharacterState" is changed
if thatPlayerInNextFrame.CharacterState != currPlayerDownsync.CharacterState {
thatPlayerInNextFrame.FramesInChState = 0
}
// Remove any active skill if not attacking
if _, existent := nonAttackingSet[thatPlayerInNextFrame.CharacterState]; existent {
2023-01-01 14:51:46 +00:00
thatPlayerInNextFrame.ActiveSkillId = int32(NO_SKILL)
thatPlayerInNextFrame.ActiveSkillHit = int32(NO_SKILL_HIT)
}
2022-12-23 14:31:55 +00:00
}
2023-01-02 08:36:17 +00:00
for _, playerCollider := range playerColliders {
playerCollider.Space.Remove(playerCollider)
}
2022-12-23 14:31:55 +00:00
return &RoomDownsyncFrame{
Id: currRenderFrame.Id + 1,
PlayersArr: nextRenderFramePlayers,
MeleeBullets: nextRenderFrameMeleeBullets,
2022-12-23 14:31:55 +00:00
}
}
2022-12-25 06:18:48 +00:00
func GenerateRectCollider(wx, wy, w, h, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY float64, data interface{}, tag string) *resolv.Object {
blX, blY := WorldToPolygonColliderBLPos(wx, wy, w*0.5, h*0.5, topPadding, bottomPadding, leftPadding, rightPadding, spaceOffsetX, spaceOffsetY)
return generateRectColliderInCollisionSpace(blX, blY, leftPadding+w+rightPadding, bottomPadding+h+topPadding, data, tag)
}
func generateRectColliderInCollisionSpace(blX, blY, w, h float64, data interface{}, tag string) *resolv.Object {
collider := resolv.NewObject(blX, blY, w, h, tag) // Unlike its frontend counter part, the position of a "resolv.Object" must be specified by "bottom-left point" because "w" and "h" must be positive, see "resolv.Object.BoundsToSpace" for details
shape := resolv.NewRectangle(0, 0, w, h)
collider.SetShape(shape)
collider.Data = data
return collider
}
func GenerateConvexPolygonCollider(unalignedSrc *Polygon2D, spaceOffsetX, spaceOffsetY float64, data interface{}, tag string) *resolv.Object {
aligned := AlignPolygon2DToBoundingBox(unalignedSrc)
var w, h float64 = 0, 0
shape := resolv.NewConvexPolygon()
for i, pi := range aligned.Points {
for j, pj := range aligned.Points {
if i == j {
continue
}
if math.Abs(pj.X-pi.X) > w {
w = math.Abs(pj.X - pi.X)
}
if math.Abs(pj.Y-pi.Y) > h {
h = math.Abs(pj.Y - pi.Y)
}
}
}
for i := 0; i < len(aligned.Points); i++ {
p := aligned.Points[i]
shape.AddPoints(p.X, p.Y)
}
collider := resolv.NewObject(aligned.Anchor.X+spaceOffsetX, aligned.Anchor.Y+spaceOffsetY, w, h, tag)
collider.SetShape(shape)
collider.Data = data
return collider
}
func AlignPolygon2DToBoundingBox(input *Polygon2D) *Polygon2D {
// Transform again to put "anchor" at the "bottom-left point (w.r.t. world space)" of the bounding box for "resolv"
boundingBoxBL := &Vec2D{
X: MAX_FLOAT64,
Y: MAX_FLOAT64,
}
for _, p := range input.Points {
if p.X < boundingBoxBL.X {
boundingBoxBL.X = p.X
}
if p.Y < boundingBoxBL.Y {
boundingBoxBL.Y = p.Y
}
}
// Now "input.Anchor" should move to "input.Anchor+boundingBoxBL", thus "boundingBoxBL" is also the value of the negative diff for all "input.Points"
output := &Polygon2D{
Anchor: &Vec2D{
X: input.Anchor.X + boundingBoxBL.X,
Y: input.Anchor.Y + boundingBoxBL.Y,
},
Points: make([]*Vec2D, len(input.Points)),
}
for i, p := range input.Points {
output.Points[i] = &Vec2D{
X: p.X - boundingBoxBL.X,
Y: p.Y - boundingBoxBL.Y,
}
}
return output
}