2022-12-25 18:44:29 +08:00
package resolv
import (
"math"
)
type Shape interface {
// Intersection tests to see if a Shape intersects with the other given Shape. dx and dy are delta movement variables indicating
// movement to be applied before the intersection check (thereby allowing you to see if a Shape would collide with another if it
// were in a different relative location). If an Intersection is found, a ContactSet will be returned, giving information regarding
// the intersection.
Intersection ( dx , dy float64 , other Shape ) * ContactSet
// Bounds returns the top-left and bottom-right points of the Shape.
Bounds ( ) ( Vector , Vector )
// Position returns the X and Y position of the Shape.
Position ( ) ( float64 , float64 )
// SetPosition allows you to place a Shape at another location.
SetPosition ( x , y float64 )
// Clone duplicates the Shape.
Clone ( ) Shape
}
// A Line is a helper shape used to determine if two ConvexPolygon lines intersect; you can't create a Line to use as a Shape.
// Instead, you can create a ConvexPolygon, specify two points, and set its Closed value to false.
type Line struct {
Start , End Vector
}
func NewLine ( x , y , x2 , y2 float64 ) * Line {
return & Line {
Start : Vector { x , y } ,
End : Vector { x2 , y2 } ,
}
}
func ( line * Line ) Project ( axis Vector ) Vector {
return line . Vector ( ) . Scale ( axis . Dot ( line . Start . Sub ( line . End ) ) )
}
func ( line * Line ) Normal ( ) Vector {
v := line . Vector ( )
return Vector { v [ 1 ] , - v [ 0 ] } . Unit ( )
}
func ( line * Line ) Vector ( ) Vector {
return line . End . Clone ( ) . Sub ( line . Start ) . Unit ( )
}
// IntersectionPointsLine returns the intersection point of a Line with another Line as a Vector. If no intersection is found, it will return nil.
func ( line * Line ) IntersectionPointsLine ( other * Line ) Vector {
det := ( line . End [ 0 ] - line . Start [ 0 ] ) * ( other . End [ 1 ] - other . Start [ 1 ] ) - ( other . End [ 0 ] - other . Start [ 0 ] ) * ( line . End [ 1 ] - line . Start [ 1 ] )
if det != 0 {
// MAGIC MATH; the extra + 1 here makes it so that corner cases (literally, lines going through corners) works.
// lambda := (float32(((line.Y-b.Y)*(b.X2-b.X))-((line.X-b.X)*(b.Y2-b.Y))) + 1) / float32(det)
lambda := ( ( ( line . Start [ 1 ] - other . Start [ 1 ] ) * ( other . End [ 0 ] - other . Start [ 0 ] ) ) - ( ( line . Start [ 0 ] - other . Start [ 0 ] ) * ( other . End [ 1 ] - other . Start [ 1 ] ) ) + 1 ) / det
// gamma := (float32(((line.Y-b.Y)*(line.X2-line.X))-((line.X-b.X)*(line.Y2-line.Y))) + 1) / float32(det)
gamma := ( ( ( line . Start [ 1 ] - other . Start [ 1 ] ) * ( line . End [ 0 ] - line . Start [ 0 ] ) ) - ( ( line . Start [ 0 ] - other . Start [ 0 ] ) * ( line . End [ 1 ] - line . Start [ 1 ] ) ) + 1 ) / det
if ( 0 < lambda && lambda < 1 ) && ( 0 < gamma && gamma < 1 ) {
// Delta
dx := line . End [ 0 ] - line . Start [ 0 ]
dy := line . End [ 1 ] - line . Start [ 1 ]
// dx, dy := line.GetDelta()
return Vector { line . Start [ 0 ] + ( lambda * dx ) , line . Start [ 1 ] + ( lambda * dy ) }
}
}
return nil
}
// IntersectionPointsCircle returns a slice of Vectors, each indicating the intersection point. If no intersection is found, it will return an empty slice.
func ( line * Line ) IntersectionPointsCircle ( circle * Circle ) [ ] Vector {
points := [ ] Vector { }
cp := Vector { circle . X , circle . Y }
lStart := line . Start . Sub ( cp )
lEnd := line . End . Sub ( cp )
diff := lEnd . Sub ( lStart )
a := diff [ 0 ] * diff [ 0 ] + diff [ 1 ] * diff [ 1 ]
b := 2 * ( ( diff [ 0 ] * lStart [ 0 ] ) + ( diff [ 1 ] * lStart [ 1 ] ) )
c := ( lStart [ 0 ] * lStart [ 0 ] ) + ( lStart [ 1 ] * lStart [ 1 ] ) - ( circle . Radius * circle . Radius )
det := b * b - ( 4 * a * c )
if det < 0 {
// Do nothing, no intersections
} else if det == 0 {
t := - b / ( 2 * a )
if t >= 0 && t <= 1 {
points = append ( points , Vector { line . Start [ 0 ] + t * diff [ 0 ] , line . Start [ 1 ] + t * diff [ 1 ] } )
}
} else {
t := ( - b + math . Sqrt ( det ) ) / ( 2 * a )
// We have to ensure t is between 0 and 1; otherwise, the collision points are on the circle as though the lines were infinite in length.
if t >= 0 && t <= 1 {
points = append ( points , Vector { line . Start [ 0 ] + t * diff [ 0 ] , line . Start [ 1 ] + t * diff [ 1 ] } )
}
t = ( - b - math . Sqrt ( det ) ) / ( 2 * a )
if t >= 0 && t <= 1 {
points = append ( points , Vector { line . Start [ 0 ] + t * diff [ 0 ] , line . Start [ 1 ] + t * diff [ 1 ] } )
}
}
return points
}
type ConvexPolygon struct {
Points [ ] Vector
X , Y float64
Closed bool
}
// NewConvexPolygon creates a new convex polygon from the provided set of X and Y positions of 2D points (or vertices). Should generally be ordered clockwise,
// from X and Y of the first, to X and Y of the last. For example: NewConvexPolygon(0, 0, 10, 0, 10, 10, 0, 10) would create a 10x10 convex
// polygon square, with the vertices at {0,0}, {10,0}, {10, 10}, and {0, 10}.
func NewConvexPolygon ( points ... float64 ) * ConvexPolygon {
// if len(points)/2 < 2 {
// return nil
// }
cp := & ConvexPolygon { Points : [ ] Vector { } , Closed : true }
cp . AddPoints ( points ... )
return cp
}
func ( cp * ConvexPolygon ) Clone ( ) Shape {
points := [ ] Vector { }
for _ , point := range cp . Points {
points = append ( points , point . Clone ( ) )
}
newPoly := NewConvexPolygon ( )
newPoly . X = cp . X
newPoly . Y = cp . Y
newPoly . AddPointsVec ( points ... )
newPoly . Closed = cp . Closed
return newPoly
}
// AddPointsVec allows you to add points to the ConvexPolygon with a slice of Vectors, each indicating a point / vertex.
func ( cp * ConvexPolygon ) AddPointsVec ( points ... Vector ) {
cp . Points = append ( cp . Points , points ... )
}
// AddPoints allows you to add points to the ConvexPolygon with a slice or selection of float64s, with each pair indicating an X or Y value for
// a point / vertex (i.e. AddPoints(0, 1, 2, 3) would add two points - one at {0, 1}, and another at {2, 3}).
func ( cp * ConvexPolygon ) AddPoints ( vertexPositions ... float64 ) {
for v := 0 ; v < len ( vertexPositions ) ; v += 2 {
cp . Points = append ( cp . Points , Vector { vertexPositions [ v ] , vertexPositions [ v + 1 ] } )
}
}
// Lines returns a slice of transformed Lines composing the ConvexPolygon.
func ( cp * ConvexPolygon ) Lines ( ) [ ] * Line {
lines := [ ] * Line { }
vertices := cp . Transformed ( )
for i := 0 ; i < len ( vertices ) ; i ++ {
start , end := vertices [ i ] , vertices [ 0 ]
if i < len ( vertices ) - 1 {
end = vertices [ i + 1 ]
} else if ! cp . Closed {
break
}
line := NewLine ( start [ 0 ] , start [ 1 ] , end [ 0 ] , end [ 1 ] )
lines = append ( lines , line )
}
return lines
}
// Transformed returns the ConvexPolygon's points / vertices, transformed according to the ConvexPolygon's position.
func ( cp * ConvexPolygon ) Transformed ( ) [ ] Vector {
transformed := [ ] Vector { }
for _ , point := range cp . Points {
transformed = append ( transformed , Vector { point [ 0 ] + cp . X , point [ 1 ] + cp . Y } )
}
return transformed
}
// Bounds returns two Vectors, comprising the top-left and bottom-right positions of the bounds of the
// ConvexPolygon, post-transformation.
func ( cp * ConvexPolygon ) Bounds ( ) ( Vector , Vector ) {
transformed := cp . Transformed ( )
topLeft := Vector { transformed [ 0 ] [ 0 ] , transformed [ 0 ] [ 1 ] }
bottomRight := topLeft . Clone ( )
for i := 0 ; i < len ( transformed ) ; i ++ {
point := transformed [ i ]
if point [ 0 ] < topLeft [ 0 ] {
topLeft [ 0 ] = point [ 0 ]
} else if point [ 0 ] > bottomRight [ 0 ] {
bottomRight [ 0 ] = point [ 0 ]
}
if point [ 1 ] < topLeft [ 1 ] {
topLeft [ 1 ] = point [ 1 ]
} else if point [ 1 ] > bottomRight [ 1 ] {
bottomRight [ 1 ] = point [ 1 ]
}
}
return topLeft , bottomRight
}
// Position returns the position of the ConvexPolygon.
func ( cp * ConvexPolygon ) Position ( ) ( float64 , float64 ) {
return cp . X , cp . Y
}
// SetPosition sets the position of the ConvexPolygon. The offset of the vertices compared to the X and Y position is relative to however
// you initially defined the polygon and added the vertices.
func ( cp * ConvexPolygon ) SetPosition ( x , y float64 ) {
cp . X = x
cp . Y = y
}
// SetPositionVec allows you to set the position of the ConvexPolygon using a Vector. The offset of the vertices compared to the X and Y
// position is relative to however you initially defined the polygon and added the vertices.
func ( cp * ConvexPolygon ) SetPositionVec ( vec Vector ) {
cp . X = vec . X ( )
cp . Y = vec . Y ( )
}
// Move translates the ConvexPolygon by the designated X and Y values.
func ( cp * ConvexPolygon ) Move ( x , y float64 ) {
cp . X += x
cp . Y += y
}
// MoveVec translates the ConvexPolygon by the designated Vector.
func ( cp * ConvexPolygon ) MoveVec ( vec Vector ) {
cp . X += vec . X ( )
cp . Y += vec . Y ( )
}
// Center returns the transformed Center of the ConvexPolygon.
func ( cp * ConvexPolygon ) Center ( ) Vector {
pos := Vector { 0 , 0 }
for _ , v := range cp . Transformed ( ) {
pos . Add ( v )
}
pos [ 0 ] /= float64 ( len ( cp . Transformed ( ) ) )
pos [ 1 ] /= float64 ( len ( cp . Transformed ( ) ) )
return pos
}
// Project projects (i.e. flattens) the ConvexPolygon onto the provided axis.
func ( cp * ConvexPolygon ) Project ( axis Vector ) Projection {
axis = axis . Unit ( )
vertices := cp . Transformed ( )
min := axis . Dot ( Vector { vertices [ 0 ] [ 0 ] , vertices [ 0 ] [ 1 ] } )
max := min
for i := 1 ; i < len ( vertices ) ; i ++ {
p := axis . Dot ( Vector { vertices [ i ] [ 0 ] , vertices [ i ] [ 1 ] } )
if p < min {
min = p
} else if p > max {
max = p
}
}
return Projection { min , max }
}
// SATAxes returns the axes of the ConvexPolygon for SAT intersection testing.
func ( cp * ConvexPolygon ) SATAxes ( ) [ ] Vector {
axes := [ ] Vector { }
for _ , line := range cp . Lines ( ) {
axes = append ( axes , line . Normal ( ) )
}
return axes
}
// PointInside returns if a Point (a Vector) is inside the ConvexPolygon.
func ( polygon * ConvexPolygon ) PointInside ( point Vector ) bool {
pointLine := NewLine ( point [ 0 ] , point [ 1 ] , point [ 0 ] + 999999999999 , point [ 1 ] )
contactCount := 0
for _ , line := range polygon . Lines ( ) {
if line . IntersectionPointsLine ( pointLine ) != nil {
contactCount ++
}
}
return contactCount == 1
}
type ContactSet struct {
Points [ ] Vector // Slice of Points indicating contact between the two Shapes.
MTV Vector // Minimum Translation Vector; this is the vector to move a Shape on to move it outside of its contacting Shape.
Center Vector // Center of the Contact set; this is the average of all Points contained within the Contact Set.
}
func NewContactSet ( ) * ContactSet {
return & ContactSet {
Points : [ ] Vector { } ,
MTV : Vector { 0 , 0 } ,
Center : Vector { 0 , 0 } ,
}
}
// LeftmostPoint returns the left-most point out of the ContactSet's Points slice. If the Points slice is empty somehow, this returns nil.
func ( cs * ContactSet ) LeftmostPoint ( ) Vector {
var left Vector
for _ , point := range cs . Points {
if left == nil || point [ 0 ] < left [ 0 ] {
left = point
}
}
return left
}
// RightmostPoint returns the right-most point out of the ContactSet's Points slice. If the Points slice is empty somehow, this returns nil.
func ( cs * ContactSet ) RightmostPoint ( ) Vector {
var right Vector
for _ , point := range cs . Points {
if right == nil || point [ 0 ] > right [ 0 ] {
right = point
}
}
return right
}
// TopmostPoint returns the top-most point out of the ContactSet's Points slice. If the Points slice is empty somehow, this returns nil.
func ( cs * ContactSet ) TopmostPoint ( ) Vector {
var top Vector
for _ , point := range cs . Points {
if top == nil || point [ 1 ] < top [ 1 ] {
top = point
}
}
return top
}
// BottommostPoint returns the bottom-most point out of the ContactSet's Points slice. If the Points slice is empty somehow, this returns nil.
func ( cs * ContactSet ) BottommostPoint ( ) Vector {
var bottom Vector
for _ , point := range cs . Points {
if bottom == nil || point [ 1 ] > bottom [ 1 ] {
bottom = point
}
}
return bottom
}
// Intersection tests to see if a ConvexPolygon intersects with the other given Shape. dx and dy are delta movement variables indicating
// movement to be applied before the intersection check (thereby allowing you to see if a Shape would collide with another if it
// were in a different relative location). If an Intersection is found, a ContactSet will be returned, giving information regarding
// the intersection.
func ( cp * ConvexPolygon ) Intersection ( dx , dy float64 , other Shape ) * ContactSet {
contactSet := NewContactSet ( )
ogX := cp . X
ogY := cp . Y
cp . X += dx
cp . Y += dy
if circle , isCircle := other . ( * Circle ) ; isCircle {
for _ , line := range cp . Lines ( ) {
contactSet . Points = append ( contactSet . Points , line . IntersectionPointsCircle ( circle ) ... )
}
} else if poly , isPoly := other . ( * ConvexPolygon ) ; isPoly {
for _ , line := range cp . Lines ( ) {
for _ , otherLine := range poly . Lines ( ) {
if point := line . IntersectionPointsLine ( otherLine ) ; point != nil {
contactSet . Points = append ( contactSet . Points , point )
}
}
}
}
if len ( contactSet . Points ) > 0 {
for _ , point := range contactSet . Points {
contactSet . Center = contactSet . Center . Add ( point )
}
contactSet . Center [ 0 ] /= float64 ( len ( contactSet . Points ) )
contactSet . Center [ 1 ] /= float64 ( len ( contactSet . Points ) )
if mtv := cp . calculateMTV ( contactSet , other ) ; mtv != nil {
contactSet . MTV = mtv
}
} else {
contactSet = nil
}
// If dx or dy aren't 0, then the MTV will be greater to compensate; this adjusts the vector back.
if contactSet != nil && ( dx != 0 || dy != 0 ) {
deltaMagnitude := Vector { dx , dy } . Magnitude ( )
ogMagnitude := contactSet . MTV . Magnitude ( )
contactSet . MTV = contactSet . MTV . Unit ( ) . Scale ( ogMagnitude - deltaMagnitude )
}
cp . X = ogX
cp . Y = ogY
return contactSet
}
// calculateMTV returns the MTV, if possible, and a bool indicating whether it was possible or not.
func ( cp * ConvexPolygon ) calculateMTV ( contactSet * ContactSet , otherShape Shape ) Vector {
delta := Vector { 0 , 0 }
smallest := Vector { math . MaxFloat64 , 0 }
switch other := otherShape . ( type ) {
case * ConvexPolygon :
for _ , axis := range cp . SATAxes ( ) {
if ! cp . Project ( axis ) . Overlapping ( other . Project ( axis ) ) {
return nil
}
overlap := cp . Project ( axis ) . Overlap ( other . Project ( axis ) )
if smallest . Magnitude ( ) > overlap {
smallest = axis . Scale ( overlap )
}
}
for _ , axis := range other . SATAxes ( ) {
if ! cp . Project ( axis ) . Overlapping ( other . Project ( axis ) ) {
return nil
}
overlap := cp . Project ( axis ) . Overlap ( other . Project ( axis ) )
if smallest . Magnitude ( ) > overlap {
smallest = axis . Scale ( overlap )
}
}
2022-12-27 10:09:53 +08:00
// Removed support of "Circle" to remove dependency of "sort" module
2022-12-25 18:44:29 +08:00
}
delta [ 0 ] = smallest [ 0 ]
delta [ 1 ] = smallest [ 1 ]
return delta
}
// ContainedBy returns if the ConvexPolygon is wholly contained by the other shape provided.
func ( cp * ConvexPolygon ) ContainedBy ( otherShape Shape ) bool {
switch other := otherShape . ( type ) {
case * ConvexPolygon :
for _ , axis := range cp . SATAxes ( ) {
if ! cp . Project ( axis ) . IsInside ( other . Project ( axis ) ) {
return false
}
}
for _ , axis := range other . SATAxes ( ) {
if ! cp . Project ( axis ) . IsInside ( other . Project ( axis ) ) {
return false
}
}
}
return true
}
// FlipH flips the ConvexPolygon's vertices horizontally according to their initial offset when adding the points.
func ( cp * ConvexPolygon ) FlipH ( ) {
for _ , v := range cp . Points {
v [ 0 ] = - v [ 0 ]
}
// We have to reverse vertex order after flipping the vertices to ensure the winding order is consistent between Objects (so that the normals are consistently outside or inside, which is important
// when doing Intersection tests). If we assume that the normal of a line, going from vertex A to vertex B, is one direction, then the normal would be inverted if the vertices were flipped in position,
// but not in order. This would make Intersection tests drive objects into each other, instead of giving the delta to move away.
cp . ReverseVertexOrder ( )
}
// FlipV flips the ConvexPolygon's vertices vertically according to their initial offset when adding the points.
func ( cp * ConvexPolygon ) FlipV ( ) {
for _ , v := range cp . Points {
v [ 1 ] = - v [ 1 ]
}
cp . ReverseVertexOrder ( )
}
// ReverseVertexOrder reverses the vertex ordering of the ConvexPolygon.
func ( cp * ConvexPolygon ) ReverseVertexOrder ( ) {
verts := [ ] Vector { cp . Points [ 0 ] }
for i := len ( cp . Points ) - 1 ; i >= 1 ; i -- {
verts = append ( verts , cp . Points [ i ] )
}
cp . Points = verts
}
// NewRectangle returns a rectangular ConvexPolygon with the vertices in clockwise order. In actuality, an AABBRectangle should be its own
// "thing" with its own optimized Intersection code check.
func NewRectangle ( x , y , w , h float64 ) * ConvexPolygon {
return NewConvexPolygon (
x , y ,
x + w , y ,
x + w , y + h ,
x , y + h ,
)
}
type Circle struct {
X , Y , Radius float64
}
// NewCircle returns a new Circle, with its center at the X and Y position given, and with the defined radius.
func NewCircle ( x , y , radius float64 ) * Circle {
circle := & Circle {
X : x ,
Y : y ,
Radius : radius ,
}
return circle
}
func ( circle * Circle ) Clone ( ) Shape {
return NewCircle ( circle . X , circle . Y , circle . Radius )
}
// Bounds returns the top-left and bottom-right corners of the Circle.
func ( circle * Circle ) Bounds ( ) ( Vector , Vector ) {
return Vector { circle . X - circle . Radius , circle . Y - circle . Radius } , Vector { circle . X + circle . Radius , circle . Y + circle . Radius }
}
// Intersection tests to see if a Circle intersects with the other given Shape. dx and dy are delta movement variables indicating
// movement to be applied before the intersection check (thereby allowing you to see if a Shape would collide with another if it
// were in a different relative location). If an Intersection is found, a ContactSet will be returned, giving information regarding
// the intersection.
func ( circle * Circle ) Intersection ( dx , dy float64 , other Shape ) * ContactSet {
var contactSet * ContactSet
ox := circle . X
oy := circle . Y
circle . X += dx
circle . Y += dy
// here
switch shape := other . ( type ) {
case * ConvexPolygon :
// Maybe this would work?
contactSet = shape . Intersection ( - dx , - dy , circle )
if contactSet != nil {
contactSet . MTV = contactSet . MTV . Scale ( - 1 )
}
case * Circle :
contactSet = NewContactSet ( )
contactSet . Points = circle . IntersectionPointsCircle ( shape )
if len ( contactSet . Points ) == 0 {
return nil
}
contactSet . MTV = Vector { circle . X - shape . X , circle . Y - shape . Y }
dist := contactSet . MTV . Magnitude ( )
contactSet . MTV = contactSet . MTV . Unit ( ) . Scale ( circle . Radius + shape . Radius - dist )
for _ , point := range contactSet . Points {
contactSet . Center = contactSet . Center . Add ( point )
}
contactSet . Center [ 0 ] /= float64 ( len ( contactSet . Points ) )
contactSet . Center [ 1 ] /= float64 ( len ( contactSet . Points ) )
// if contactSet != nil {
// contactSet.MTV[0] -= dx
// contactSet.MTV[1] -= dy
// }
// contactSet.MTV = Vector{circle.X - shape.X, circle.Y - shape.Y}
}
circle . X = ox
circle . Y = oy
return contactSet
}
// Move translates the Circle by the designated X and Y values.
func ( circle * Circle ) Move ( x , y float64 ) {
circle . X += x
circle . Y += y
}
// MoveVec translates the Circle by the designated Vector.
func ( circle * Circle ) MoveVec ( vec Vector ) {
circle . X += vec . X ( )
circle . Y += vec . Y ( )
}
// SetPosition sets the center position of the Circle using the X and Y values given.
func ( circle * Circle ) SetPosition ( x , y float64 ) {
circle . X = x
circle . Y = y
}
// SetPosition sets the center position of the Circle using the Vector given.
func ( circle * Circle ) SetPositionVec ( vec Vector ) {
circle . X = vec . X ( )
circle . Y = vec . Y ( )
}
// Position() returns the X and Y position of the Circle.
func ( circle * Circle ) Position ( ) ( float64 , float64 ) {
return circle . X , circle . Y
}
// PointInside returns if the given Vector is inside of the circle.
func ( circle * Circle ) PointInside ( point Vector ) bool {
return point . Sub ( Vector { circle . X , circle . Y } ) . Magnitude ( ) <= circle . Radius
}
// IntersectionPointsCircle returns the intersection points of the two circles provided.
func ( circle * Circle ) IntersectionPointsCircle ( other * Circle ) [ ] Vector {
d := math . Sqrt ( math . Pow ( other . X - circle . X , 2 ) + math . Pow ( other . Y - circle . Y , 2 ) )
if d > circle . Radius + other . Radius || d < math . Abs ( circle . Radius - other . Radius ) || d == 0 && circle . Radius == other . Radius {
return nil
}
a := ( math . Pow ( circle . Radius , 2 ) - math . Pow ( other . Radius , 2 ) + math . Pow ( d , 2 ) ) / ( 2 * d )
h := math . Sqrt ( math . Pow ( circle . Radius , 2 ) - math . Pow ( a , 2 ) )
x2 := circle . X + a * ( other . X - circle . X ) / d
y2 := circle . Y + a * ( other . Y - circle . Y ) / d
return [ ] Vector {
{ x2 + h * ( other . Y - circle . Y ) / d , y2 - h * ( other . X - circle . X ) / d } ,
{ x2 - h * ( other . Y - circle . Y ) / d , y2 + h * ( other . X - circle . X ) / d } ,
}
}
type Projection struct {
Min , Max float64
}
// Overlapping returns whether a Projection is overlapping with the other, provided Projection. Credit to https://www.sevenson.com.au/programming/sat/
func ( projection Projection ) Overlapping ( other Projection ) bool {
return projection . Overlap ( other ) > 0
}
// Overlap returns the amount that a Projection is overlapping with the other, provided Projection. Credit to https://dyn4j.org/2010/01/sat/#sat-nointer
func ( projection Projection ) Overlap ( other Projection ) float64 {
return math . Min ( projection . Max , other . Max ) - math . Max ( projection . Min , other . Min )
}
// IsInside returns whether the Projection is wholly inside of the other, provided Projection.
func ( projection Projection ) IsInside ( other Projection ) bool {
return projection . Min >= other . Min && projection . Max <= other . Max
}