195 lines
6.0 KiB
Plaintext
195 lines
6.0 KiB
Plaintext
// Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
|
||
//
|
||
// 圆角裁剪(支持任意宽高纹理)
|
||
//
|
||
// 原理:
|
||
// 1. 正方形纹理的圆角原理参考 https://www.cnblogs.com/jqm304775992/p/4987793.html
|
||
// 2. 正方形纹理的圆角代码参考 yanjifa/shaderDemor 的 https://github.com/yanjifa/shaderDemo/blob/master/assets/Effect/CircleAvatar.effect
|
||
// 3. 上述皆为只针对正方形纹理做的操作,如果是长方形的纹理,那么圆角就会有拉伸后的效果,最后变成看起来就不是圆角了,本特效支持任意长方形做圆角
|
||
|
||
CCEffect %{
|
||
techniques:
|
||
- passes:
|
||
- vert: vs
|
||
frag: fs
|
||
blendState:
|
||
targets:
|
||
- blend: true
|
||
rasterizerState:
|
||
cullMode: none
|
||
properties:
|
||
texture: { value: white }
|
||
alphaThreshold: { value: 0.5 }
|
||
|
||
# 圆角x轴半径长度(相对于纹理宽度)
|
||
xRadius: {
|
||
value: 0.4,
|
||
inspector: {
|
||
tooltip: "圆角x轴半径长度(相对于纹理宽度)",
|
||
range: [0.0, 0.5]
|
||
}
|
||
}
|
||
|
||
# 圆角y轴半径长度(相对于纹理高度)
|
||
yRadius: {
|
||
value: 0.4,
|
||
inspector: {
|
||
tooltip: "圆角y轴半径长度(相对于纹理高度)",
|
||
range: [0.0, 0.5]
|
||
}
|
||
}
|
||
}%
|
||
|
||
|
||
CCProgram vs %{
|
||
precision highp float;
|
||
|
||
#include <cc-global>
|
||
#include <cc-local>
|
||
|
||
in vec3 a_position;
|
||
in vec4 a_color;
|
||
out vec4 v_color;
|
||
|
||
#if USE_TEXTURE
|
||
in vec2 a_uv0;
|
||
out vec2 v_uv0;
|
||
#endif
|
||
|
||
void main () {
|
||
vec4 pos = vec4(a_position, 1);
|
||
|
||
#if CC_USE_MODEL
|
||
pos = cc_matViewProj * cc_matWorld * pos;
|
||
#else
|
||
pos = cc_matViewProj * pos;
|
||
#endif
|
||
|
||
#if USE_TEXTURE
|
||
v_uv0 = a_uv0;
|
||
#endif
|
||
|
||
v_color = a_color;
|
||
|
||
gl_Position = pos;
|
||
}
|
||
}%
|
||
|
||
|
||
CCProgram fs %{
|
||
precision highp float;
|
||
|
||
#include <alpha-test>
|
||
|
||
in vec4 v_color;
|
||
|
||
#if USE_TEXTURE
|
||
in vec2 v_uv0;
|
||
uniform sampler2D texture;
|
||
#endif
|
||
|
||
#if ENABLE_ROUNDCORNER
|
||
uniform RoundCorner {
|
||
// 圆角x轴半径长度(相对于纹理宽度)
|
||
float xRadius;
|
||
|
||
// 圆角y轴半径长度(相对于纹理高度)
|
||
float yRadius;
|
||
}
|
||
#endif
|
||
|
||
void main () {
|
||
vec4 o = vec4(1, 1, 1, 1);
|
||
|
||
#if USE_TEXTURE
|
||
o *= texture(texture, v_uv0);
|
||
#if CC_USE_ALPHA_ATLAS_TEXTURE
|
||
o.a *= texture2D(texture, v_uv0 + vec2(0, 0.5)).r;
|
||
#endif
|
||
#endif
|
||
|
||
o *= v_color;
|
||
|
||
ALPHA_TEST(o);
|
||
|
||
#if ENABLE_ROUNDCORNER
|
||
|
||
// 约束圆角半径范围在 [0.0, 0.5]
|
||
//
|
||
// 请注意这里我是用椭圆前缀去命名的半径
|
||
//
|
||
// 为什么是椭圆?
|
||
//
|
||
// 因为圆角,相对于长方形的纹理的宽高来说,归一化后值并不一样,不是圆,而是一个椭圆
|
||
//
|
||
// 比如:
|
||
//
|
||
// 纹理是 200 x 100 的像素,圆角半径是20像素,那么归一化后
|
||
// X轴上的半径就是 20 / 200 = 0.1
|
||
// Y轴上的半径就是 20 / 100 = 0.2
|
||
//
|
||
// 这就会变成是椭圆,而不是圆
|
||
float ellipseXRadius = clamp(0.0, 0.5, xRadius);
|
||
float ellipseYRadius = clamp(0.0, 0.5, yRadius);
|
||
|
||
// 将纹理uv往左上偏移,实现偏移后的坐标系原点在纹理中心
|
||
vec2 uv = v_uv0.xy - vec2(0.5, 0.5);
|
||
|
||
// uv.x , uv.y : 为偏移后的的uv
|
||
// abs(uv.x) , abs(uv.y) : 将第二、三、四象限的点都投影到第一象限上,这样子只需要处理第一象限的情况就可以,简化判断
|
||
// 0.5 - radius : 计算出第一象限的圆角所在圆的圆心坐标
|
||
// (rx, ry) : 偏移映射后的 新的uv 坐标,相对于 第一象限圆角坐在圆心坐标 的相对坐标
|
||
float rx = abs(uv.x) - (0.5 - ellipseXRadius);
|
||
float ry = abs(uv.y) - (0.5 - ellipseYRadius);
|
||
|
||
// 区分 以第一象限圆角所在圆心坐标为原点的坐标的四个象限
|
||
//
|
||
// 第一象限 mx = 1, my = 1
|
||
// 第二象限 mx = 0, my = 1
|
||
// 第三象限 mx = 0, my = 0
|
||
// 第四象限 mx = 1, my = 0
|
||
//
|
||
// 当 mx * my 时,只要等于1,那就是标识第一象限(实际对应圆角区域所在矩形),否则就是第二、三、四象限
|
||
float mx = step(0.5 - ellipseXRadius, abs(uv.x));
|
||
float my = step(0.5 - ellipseYRadius, abs(uv.y));
|
||
|
||
// 判断点(rx, ry)是否在椭圆外部(应用椭圆公式)
|
||
float isOutOfEllipse = step(1.0, pow(rx, 2.0) / pow(xRadius, 2.0) + pow(ry, 2.0) / pow(yRadius, 2.0));
|
||
|
||
///////////////////////////////////////////////////////////////////////////////////////////
|
||
// 抗锯齿
|
||
// 1. 先计算当前点到椭圆中心的角度
|
||
float angleInRadian = atan(ry / rx);
|
||
|
||
// 2. 计算这个角度下,对于对应圆角(椭圆)上的点
|
||
vec2 pointInEllipse = vec2(xRadius * cos(angleInRadian), yRadius * sin(angleInRadian));
|
||
|
||
// 3. 计算这个角度下,比当前圆角大一点椭圆上的点
|
||
vec2 pointInBigEllipse = vec2((xRadius * 1.01) * cos(angleInRadian), (yRadius * 1.01)* sin(angleInRadian));
|
||
|
||
// 4. 计算最远点到当前椭圆的距离
|
||
float maxDis = distance(pointInBigEllipse, pointInEllipse);
|
||
|
||
// 5. 计算当前点到当前椭圆的距离
|
||
float curDis = distance(vec2(rx, ry), pointInEllipse);
|
||
|
||
// 6. 生成插值
|
||
float smo = smoothstep(0.0, maxDis, curDis);
|
||
///////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// mx * my = 0 时,代表非椭圆角区域,alpha 值为1,代表完全采用原始纹理的透明度
|
||
// mx * my = 1 时,代表椭圆角所在矩形区域
|
||
// isOutOfEllipse:
|
||
// 当点在椭圆外部时,此值为1,导致 alpha 最终值为0.0,即表示不显示椭圆外部的像素
|
||
// 当点在椭圆内部时,此值为0,导致 alpha 最终值为1.0,即表示显示椭圆内部的像素
|
||
// smo : 抗锯齿实现
|
||
// float alpha = 1.0 - mx * my * isOutOfEllipse;
|
||
float alpha = 1.0 - mx * my * isOutOfEllipse * smo;
|
||
|
||
o = vec4(o.rgb, o.a * alpha);
|
||
|
||
#endif
|
||
gl_FragColor = o;
|
||
}
|
||
}%
|