CocosCreator-Shader-Effect-.../assets/effects/sprite-gaussian-blur-v1.effect

197 lines
5.2 KiB
Plaintext
Raw Normal View History

2020-01-16 01:50:23 +00:00
// Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd.
// 高斯模糊
2020-02-07 01:30:12 +00:00
//
// 参考资料(必读)
// * http://www.ruanyifeng.com/blog/2012/11/gaussian_blur.html
// * https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A
2020-01-16 01:50:23 +00:00
CCEffect %{
techniques:
- passes:
- vert: vs
frag: fs
blendState:
targets:
- blend: true
rasterizerState:
cullMode: none
properties:
texture: { value: white }
alphaThreshold: { value: 0.5 }
2020-01-20 15:14:39 +00:00
# # 标准方差值
# stDev: {
# value: 0.84089642,
2020-01-16 01:50:23 +00:00
# inspector: {
2020-01-20 15:14:39 +00:00
# tooltip: "标准方差值"
2020-01-16 01:50:23 +00:00
# }
# }
2020-01-20 15:14:39 +00:00
2020-01-21 08:15:35 +00:00
# 纹理尺寸
textureSize: {
value: [100.0, 100.0],
inspector: {
tooltip: "纹理尺寸px宽 x 高)"
}
}
2020-01-16 01:50:23 +00:00
}%
CCProgram vs %{
precision highp float;
#include <cc-global>
#include <cc-local>
in vec3 a_position;
in vec4 a_color;
out vec4 v_color;
#if USE_TEXTURE
in vec2 a_uv0;
out vec2 v_uv0;
#endif
void main () {
vec4 pos = vec4(a_position, 1);
#if CC_USE_MODEL
pos = cc_matViewProj * cc_matWorld * pos;
#else
pos = cc_matViewProj * pos;
#endif
#if USE_TEXTURE
v_uv0 = a_uv0;
#endif
v_color = a_color;
gl_Position = pos;
}
}%
CCProgram fs %{
precision highp float;
#include <alpha-test>
in vec4 v_color;
#if USE_TEXTURE
in vec2 v_uv0;
uniform sampler2D texture;
#endif
#if ENABLE_GAUSSIAN_BLUR
// 定义无理数
#define e 2.718281828459045
2020-02-07 01:30:12 +00:00
// 定义标准方差值(方差值越大,越模糊,但是需要计算的高斯矩阵范围会变大,从而带来巨大的计算量)
// #define stDev 0.84089642
#define stDev 1.5
2020-01-21 08:15:35 +00:00
// #define stDev 5.0
2020-01-20 15:14:39 +00:00
// #define stDev 10.0
2020-01-16 01:50:23 +00:00
// 定义π
#define pi 3.141592653589793
2020-01-20 15:14:39 +00:00
// 接收外部变量
uniform GaussianBlur {
2020-01-21 08:15:35 +00:00
// 纹理尺寸(宽 x 高px
vec2 textureSize;
2020-01-20 15:14:39 +00:00
// // 标准方差值
// float stDev;
2020-02-17 01:32:23 +00:00
};
2020-01-20 14:42:59 +00:00
/**
2020-02-07 01:30:12 +00:00
* 获取权重(对应二维高斯函数公式,见 https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A )
2020-01-20 14:42:59 +00:00
*/
float getWeight(float x, float y) {
2020-01-20 15:14:39 +00:00
return (1.0 / (2.0 * pi * pow(stDev, 2.0))) * pow(1.0 / e, (pow(x, 2.0) + pow(y, 2.0)) / (2.0 * pow(stDev, 2.0)));
2020-01-20 14:42:59 +00:00
}
2020-01-16 01:50:23 +00:00
#endif
void main () {
vec4 o = vec4(1, 1, 1, 1);
#if USE_TEXTURE
o *= texture(texture, v_uv0);
#if CC_USE_ALPHA_ATLAS_TEXTURE
o.a *= texture2D(texture, v_uv0 + vec2(0, 0.5)).r;
#endif
#endif
o *= v_color;
ALPHA_TEST(o);
2020-01-20 14:42:59 +00:00
gl_FragColor = o;
2020-01-16 01:50:23 +00:00
#if ENABLE_GAUSSIAN_BLUR
2020-01-20 15:14:39 +00:00
2020-02-07 01:30:12 +00:00
// 根据高斯分布也叫正态分布在3个标准差范围内的分布比例占到99%的权重,因此我们只需要计算矩阵范围 [6 * stDev + 1, 6 * stDev +1] 上的权重
2020-01-21 10:48:13 +00:00
const float size = floor(stDev * 6.0 + 1.0);
2020-01-20 15:14:39 +00:00
const float halfSize = floor(size / 2.0);
2020-01-21 10:48:13 +00:00
2020-02-07 01:46:33 +00:00
// 步骤一:计算高斯矩阵上所有权重的和
2020-01-21 10:48:13 +00:00
// // v1遍历所有点每个点都计算权重
// float totalWeight = 0.0;
// for(float x = -halfSize; x<= halfSize; x++) {
// for (float y = -halfSize; y<= halfSize; y++) {
// totalWeight += getWeight(x, y);
// }
// }
2020-02-07 01:30:12 +00:00
// v2因为高斯分布是对称的所以只计算原点、X轴正方向 * 2 、Y轴正方向 * 2 、第一象限的权重 * 4即可求出所有权重之和相比起v1版本减少很多循环计算
2020-01-21 10:48:13 +00:00
// 原点
float totalWeight = getWeight(0.0, 0.0);
// X轴正方向上的权重 * 2.0 就是整个X轴上的权重
for(float x = 1.0; x <= halfSize; x++) {
totalWeight += getWeight(x, 0.0) * 2.0;
}
// Y轴正方向上的权重 * 2.0 就是整个Y轴上的权重
for(float y = 1.0; y <= halfSize; y++) {
totalWeight += getWeight(0.0, y) * 2.0;
2020-01-21 08:15:35 +00:00
}
2020-01-21 10:48:13 +00:00
// 第一象限的权重 * 4.0 就是4个象限的权重
for(float x = 1.0; x <= halfSize; x++) {
for (float y = 1.0; y<= halfSize; y++) {
totalWeight += getWeight(x, y) * 4.0;
}
}
2020-01-20 14:42:59 +00:00
2020-02-07 01:30:12 +00:00
// TODO:
//
// 因为权重矩阵是一次性计算即可不断应用因此可以将权重矩阵的计算放到CPU计算并传入到Shader直接渲染因此有以下优化方案
//
// v3原始权重矩阵在CPU计算并传入到Shader
// v4加权平均后的权重矩阵在CPU计算并传入Shader
// 步骤二:采样周边像素并应用加权平均值,得出最终像素值
2020-01-20 14:42:59 +00:00
vec4 finalColor = vec4(0.0, 0.0, 0.0, 0.0);
2020-02-07 01:30:12 +00:00
// float divider = 0.01;
2020-01-21 08:15:35 +00:00
float onePxWidth = 1.0 / textureSize.x;
float onePxHeight = 1.0 / textureSize.y;
2020-01-20 15:14:39 +00:00
for(float x = -halfSize; x<= halfSize; x++) {
for (float y = -halfSize; y<= halfSize; y++) {
// 求出对应坐标的真正权重(对应权重矩阵)
2020-02-07 01:30:12 +00:00
float weight = getWeight(x, y) / totalWeight;
2020-01-20 15:14:39 +00:00
// 求出对应坐标像素颜色值的加权值
2020-01-21 08:15:35 +00:00
// finalColor += texture(texture, v_uv0 + vec2(divider * x, divider * y)) * weight;
finalColor += texture(texture, v_uv0 + vec2(onePxWidth * x, onePxHeight * y)) * weight;
2020-01-20 14:42:59 +00:00
}
}
gl_FragColor = finalColor;
2020-01-16 01:50:23 +00:00
#endif
}
}%