ccc-tnt-psd2ui/npm-packages/mac-v2.4.x/ag-psd/dist/bundle.js
2023-07-27 15:04:13 +08:00

16954 lines
618 KiB
JavaScript

(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.agPsd = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.readAbr = void 0;
var descriptor_1 = require("./descriptor");
var psdReader_1 = require("./psdReader");
var dynamicsControl = ['off', 'fade', 'pen pressure', 'pen tilt', 'stylus wheel', 'initial direction', 'direction', 'initial rotation', 'rotation'];
function parseDynamics(desc) {
return {
control: dynamicsControl[desc.bVTy],
steps: desc.fStp,
jitter: (0, descriptor_1.parsePercent)(desc.jitter),
minimum: (0, descriptor_1.parsePercent)(desc['Mnm ']),
};
}
function parseBrushShape(desc) {
var shape = {
size: (0, descriptor_1.parseUnitsToNumber)(desc.Dmtr, 'Pixels'),
angle: (0, descriptor_1.parseAngle)(desc.Angl),
roundness: (0, descriptor_1.parsePercent)(desc.Rndn),
spacingOn: desc.Intr,
spacing: (0, descriptor_1.parsePercent)(desc.Spcn),
flipX: desc.flipX,
flipY: desc.flipY,
};
if (desc['Nm '])
shape.name = desc['Nm '];
if (desc.Hrdn)
shape.hardness = (0, descriptor_1.parsePercent)(desc.Hrdn);
if (desc.sampledData)
shape.sampledData = desc.sampledData;
return shape;
}
function readAbr(buffer, options) {
var _a, _b, _c, _d;
if (options === void 0) { options = {}; }
var reader = (0, psdReader_1.createReader)(buffer.buffer, buffer.byteOffset, buffer.byteLength);
var version = (0, psdReader_1.readInt16)(reader);
var samples = [];
var brushes = [];
var patterns = [];
if (version === 1 || version === 2) {
throw new Error("Unsupported ABR version (".concat(version, ")")); // TODO: ...
}
else if (version === 6 || version === 7 || version === 9 || version === 10) {
var minorVersion = (0, psdReader_1.readInt16)(reader);
if (minorVersion !== 1 && minorVersion !== 2)
throw new Error('Unsupported ABR minor version');
while (reader.offset < reader.view.byteLength) {
(0, psdReader_1.checkSignature)(reader, '8BIM');
var type = (0, psdReader_1.readSignature)(reader);
var size = (0, psdReader_1.readUint32)(reader);
var end = reader.offset + size;
switch (type) {
case 'samp': {
while (reader.offset < end) {
var brushLength = (0, psdReader_1.readUint32)(reader);
while (brushLength & 3)
brushLength++; // pad to 4 byte alignment
var brushEnd = reader.offset + brushLength;
var id = (0, psdReader_1.readPascalString)(reader, 1);
// v1 - Skip the Int16 bounds rectangle and the unknown Int16.
// v2 - Skip the unknown bytes.
(0, psdReader_1.skipBytes)(reader, minorVersion === 1 ? 10 : 264);
var y = (0, psdReader_1.readInt32)(reader);
var x = (0, psdReader_1.readInt32)(reader);
var h = (0, psdReader_1.readInt32)(reader) - y;
var w = (0, psdReader_1.readInt32)(reader) - x;
if (w <= 0 || h <= 0)
throw new Error('Invalid bounds');
var depth = (0, psdReader_1.readInt16)(reader);
var compression = (0, psdReader_1.readUint8)(reader); // 0 - raw, 1 - RLE
var alpha = new Uint8Array(w * h);
if (depth === 8) {
if (compression === 0) {
alpha.set((0, psdReader_1.readBytes)(reader, alpha.byteLength));
}
else if (compression === 1) {
(0, psdReader_1.readDataRLE)(reader, { width: w, height: h, data: alpha }, w, h, 1, [0], false);
}
else {
throw new Error('Invalid compression');
}
}
else if (depth === 16) {
if (compression === 0) {
for (var i = 0; i < alpha.byteLength; i++) {
alpha[i] = (0, psdReader_1.readUint16)(reader) >> 8; // convert to 8bit values
}
}
else if (compression === 1) {
throw new Error('not implemented (16bit RLE)'); // TODO: ...
}
else {
throw new Error('Invalid compression');
}
}
else {
throw new Error('Invalid depth');
}
samples.push({ id: id, bounds: { x: x, y: y, w: w, h: h }, alpha: alpha });
reader.offset = brushEnd;
}
break;
}
case 'desc': {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
for (var _i = 0, _e = desc.Brsh; _i < _e.length; _i++) {
var brush = _e[_i];
var b = {
name: brush['Nm '],
shape: parseBrushShape(brush.Brsh),
spacing: (0, descriptor_1.parsePercent)(brush.Spcn),
// TODO: brushGroup ???
wetEdges: brush.Wtdg,
noise: brush.Nose,
// TODO: TxtC ??? smoothing / build-up ?
// TODO: 'Rpt ' ???
useBrushSize: brush.useBrushSize, // ???
};
if (brush.interpretation != null)
b.interpretation = brush.interpretation;
if (brush.protectTexture != null)
b.protectTexture = brush.protectTexture;
if (brush.useTipDynamics) {
b.shapeDynamics = {
tiltScale: (0, descriptor_1.parsePercent)(brush.tiltScale),
sizeDynamics: parseDynamics(brush.szVr),
angleDynamics: parseDynamics(brush.angleDynamics),
roundnessDynamics: parseDynamics(brush.roundnessDynamics),
flipX: brush.flipX,
flipY: brush.flipY,
brushProjection: brush.brushProjection,
minimumDiameter: (0, descriptor_1.parsePercent)(brush.minimumDiameter),
minimumRoundness: (0, descriptor_1.parsePercent)(brush.minimumRoundness),
};
}
if (brush.useScatter) {
b.scatter = {
count: brush['Cnt '],
bothAxes: brush.bothAxes,
countDynamics: parseDynamics(brush.countDynamics),
scatterDynamics: parseDynamics(brush.scatterDynamics),
};
}
if (brush.useTexture && brush.Txtr) {
b.texture = {
id: brush.Txtr.Idnt,
name: brush.Txtr['Nm '],
blendMode: descriptor_1.BlnM.decode(brush.textureBlendMode),
depth: (0, descriptor_1.parsePercent)(brush.textureDepth),
depthMinimum: (0, descriptor_1.parsePercent)(brush.minimumDepth),
depthDynamics: parseDynamics(brush.textureDepthDynamics),
scale: (0, descriptor_1.parsePercent)(brush.textureScale),
invert: brush.InvT,
brightness: brush.textureBrightness,
contrast: brush.textureContrast,
};
}
var db = brush.dualBrush;
if (db && db.useDualBrush) {
b.dualBrush = {
flip: db.Flip,
shape: parseBrushShape(db.Brsh),
blendMode: descriptor_1.BlnM.decode(db.BlnM),
useScatter: db.useScatter,
spacing: (0, descriptor_1.parsePercent)(db.Spcn),
count: db['Cnt '],
bothAxes: db.bothAxes,
countDynamics: parseDynamics(db.countDynamics),
scatterDynamics: parseDynamics(db.scatterDynamics),
};
}
if (brush.useColorDynamics) {
b.colorDynamics = {
foregroundBackground: parseDynamics(brush.clVr),
hue: (0, descriptor_1.parsePercent)(brush['H ']),
saturation: (0, descriptor_1.parsePercent)(brush.Strt),
brightness: (0, descriptor_1.parsePercent)(brush.Brgh),
purity: (0, descriptor_1.parsePercent)(brush.purity),
perTip: brush.colorDynamicsPerTip,
};
}
if (brush.usePaintDynamics) {
b.transfer = {
flowDynamics: parseDynamics(brush.prVr),
opacityDynamics: parseDynamics(brush.opVr),
wetnessDynamics: parseDynamics(brush.wtVr),
mixDynamics: parseDynamics(brush.mxVr),
};
}
if (brush.useBrushPose) {
b.brushPose = {
overrideAngle: brush.overridePoseAngle,
overrideTiltX: brush.overridePoseTiltX,
overrideTiltY: brush.overridePoseTiltY,
overridePressure: brush.overridePosePressure,
pressure: (0, descriptor_1.parsePercent)(brush.brushPosePressure),
tiltX: brush.brushPoseTiltX,
tiltY: brush.brushPoseTiltY,
angle: brush.brushPoseAngle,
};
}
var to = brush.toolOptions;
if (to) {
b.toolOptions = {
brushPreset: to.brushPreset,
flow: (_a = to.flow) !== null && _a !== void 0 ? _a : 100,
smooth: (_b = to.Smoo) !== null && _b !== void 0 ? _b : 0,
mode: descriptor_1.BlnM.decode(to['Md '] || 'BlnM.Nrml'),
opacity: (_c = to.Opct) !== null && _c !== void 0 ? _c : 100,
smoothing: !!to.smoothing,
smoothingValue: to.smoothingValue || 0,
smoothingRadiusMode: !!to.smoothingRadiusMode,
smoothingCatchup: !!to.smoothingCatchup,
smoothingCatchupAtEnd: !!to.smoothingCatchupAtEnd,
smoothingZoomCompensation: !!to.smoothingZoomCompensation,
pressureSmoothing: !!to.pressureSmoothing,
usePressureOverridesSize: !!to.usePressureOverridesSize,
usePressureOverridesOpacity: !!to.usePressureOverridesOpacity,
useLegacy: !!to.useLegacy,
};
if (to.prVr) {
b.toolOptions.flowDynamics = parseDynamics(to.prVr);
}
if (to.opVr) {
b.toolOptions.opacityDynamics = parseDynamics(to.opVr);
}
if (to.szVr) {
b.toolOptions.sizeDynamics = parseDynamics(to.szVr);
}
}
brushes.push(b);
}
break;
}
case 'patt': {
if (reader.offset < end) { // TODO: check multiple patterns
patterns.push((0, psdReader_1.readPattern)(reader));
reader.offset = end;
}
break;
}
case 'phry': {
// TODO: what is this ?
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
if (options.logMissingFeatures) {
if ((_d = desc.hierarchy) === null || _d === void 0 ? void 0 : _d.length) {
console.log('unhandled phry section', desc);
}
}
break;
}
default:
throw new Error("Invalid brush type: ".concat(type));
}
// align to 4 bytes
while (size % 4) {
reader.offset++;
size++;
}
}
}
else {
throw new Error("Unsupported ABR version (".concat(version, ")"));
}
return { samples: samples, patterns: patterns, brushes: brushes };
}
exports.readAbr = readAbr;
},{"./descriptor":4,"./psdReader":11}],2:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.hasMultiEffects = exports.readVectorMask = exports.booleanOperations = exports.readBezierKnot = exports.infoHandlersMap = exports.infoHandlers = void 0;
var base64_js_1 = require("base64-js");
var effectsHelpers_1 = require("./effectsHelpers");
var helpers_1 = require("./helpers");
var psdReader_1 = require("./psdReader");
var psdWriter_1 = require("./psdWriter");
var descriptor_1 = require("./descriptor");
var engineData_1 = require("./engineData");
var text_1 = require("./text");
exports.infoHandlers = [];
exports.infoHandlersMap = {};
function addHandler(key, has, read, write) {
var handler = { key: key, has: has, read: read, write: write };
exports.infoHandlers.push(handler);
exports.infoHandlersMap[handler.key] = handler;
}
function addHandlerAlias(key, target) {
exports.infoHandlersMap[key] = exports.infoHandlersMap[target];
}
function hasKey(key) {
return function (target) { return target[key] !== undefined; };
}
function readLength64(reader) {
if ((0, psdReader_1.readUint32)(reader))
throw new Error("Resource size above 4 GB limit at ".concat(reader.offset.toString(16)));
return (0, psdReader_1.readUint32)(reader);
}
function writeLength64(writer, length) {
(0, psdWriter_1.writeUint32)(writer, 0);
(0, psdWriter_1.writeUint32)(writer, length);
}
addHandler('TySh', hasKey('text'), function (reader, target, leftBytes) {
if ((0, psdReader_1.readInt16)(reader) !== 1)
throw new Error("Invalid TySh version");
var transform = [];
for (var i = 0; i < 6; i++)
transform.push((0, psdReader_1.readFloat64)(reader));
if ((0, psdReader_1.readInt16)(reader) !== 50)
throw new Error("Invalid TySh text version");
var text = (0, descriptor_1.readVersionAndDescriptor)(reader);
if ((0, psdReader_1.readInt16)(reader) !== 1)
throw new Error("Invalid TySh warp version");
var warp = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.text = {
transform: transform,
left: (0, psdReader_1.readFloat32)(reader),
top: (0, psdReader_1.readFloat32)(reader),
right: (0, psdReader_1.readFloat32)(reader),
bottom: (0, psdReader_1.readFloat32)(reader),
text: text['Txt '].replace(/\r/g, '\n'),
index: text.TextIndex || 0,
gridding: descriptor_1.textGridding.decode(text.textGridding),
antiAlias: descriptor_1.Annt.decode(text.AntA),
orientation: descriptor_1.Ornt.decode(text.Ornt),
warp: {
style: descriptor_1.warpStyle.decode(warp.warpStyle),
value: warp.warpValue || 0,
perspective: warp.warpPerspective || 0,
perspectiveOther: warp.warpPerspectiveOther || 0,
rotate: descriptor_1.Ornt.decode(warp.warpRotate),
},
};
if (text.EngineData) {
var engineData = (0, text_1.decodeEngineData)((0, engineData_1.parseEngineData)(text.EngineData));
// const before = parseEngineData(text.EngineData);
// const after = encodeEngineData(engineData);
// require('fs').writeFileSync('before.txt', require('util').inspect(before, false, 99, false), 'utf8');
// require('fs').writeFileSync('after.txt', require('util').inspect(after, false, 99, false), 'utf8');
// console.log(require('util').inspect(parseEngineData(text.EngineData), false, 99, true));
target.text = __assign(__assign({}, target.text), engineData);
// console.log(require('util').inspect(target.text, false, 99, true));
}
(0, psdReader_1.skipBytes)(reader, leftBytes());
}, function (writer, target) {
var text = target.text;
var warp = text.warp || {};
var transform = text.transform || [1, 0, 0, 1, 0, 0];
var textDescriptor = {
'Txt ': (text.text || '').replace(/\r?\n/g, '\r'),
textGridding: descriptor_1.textGridding.encode(text.gridding),
Ornt: descriptor_1.Ornt.encode(text.orientation),
AntA: descriptor_1.Annt.encode(text.antiAlias),
TextIndex: text.index || 0,
EngineData: (0, engineData_1.serializeEngineData)((0, text_1.encodeEngineData)(text)),
};
(0, psdWriter_1.writeInt16)(writer, 1); // version
for (var i = 0; i < 6; i++) {
(0, psdWriter_1.writeFloat64)(writer, transform[i]);
}
(0, psdWriter_1.writeInt16)(writer, 50); // text version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'TxLr', textDescriptor);
(0, psdWriter_1.writeInt16)(writer, 1); // warp version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'warp', encodeWarp(warp));
(0, psdWriter_1.writeFloat32)(writer, text.left);
(0, psdWriter_1.writeFloat32)(writer, text.top);
(0, psdWriter_1.writeFloat32)(writer, text.right);
(0, psdWriter_1.writeFloat32)(writer, text.bottom);
// writeZeros(writer, 2);
});
// vector fills
addHandler('SoCo', function (target) { return target.vectorFill !== undefined && target.vectorStroke === undefined &&
target.vectorFill.type === 'color'; }, function (reader, target) {
var descriptor = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.vectorFill = (0, descriptor_1.parseVectorContent)(descriptor);
}, function (writer, target) {
var descriptor = (0, descriptor_1.serializeVectorContent)(target.vectorFill).descriptor;
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', descriptor);
});
addHandler('GdFl', function (target) { return target.vectorFill !== undefined && target.vectorStroke === undefined &&
(target.vectorFill.type === 'solid' || target.vectorFill.type === 'noise'); }, function (reader, target, left) {
var descriptor = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.vectorFill = (0, descriptor_1.parseVectorContent)(descriptor);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var descriptor = (0, descriptor_1.serializeVectorContent)(target.vectorFill).descriptor;
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', descriptor);
});
addHandler('PtFl', function (target) { return target.vectorFill !== undefined && target.vectorStroke === undefined &&
target.vectorFill.type === 'pattern'; }, function (reader, target) {
var descriptor = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.vectorFill = (0, descriptor_1.parseVectorContent)(descriptor);
}, function (writer, target) {
var descriptor = (0, descriptor_1.serializeVectorContent)(target.vectorFill).descriptor;
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', descriptor);
});
addHandler('vscg', function (target) { return target.vectorFill !== undefined && target.vectorStroke !== undefined; }, function (reader, target, left) {
(0, psdReader_1.readSignature)(reader); // key
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.vectorFill = (0, descriptor_1.parseVectorContent)(desc);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a = (0, descriptor_1.serializeVectorContent)(target.vectorFill), descriptor = _a.descriptor, key = _a.key;
(0, psdWriter_1.writeSignature)(writer, key);
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', descriptor);
});
function readBezierKnot(reader, width, height) {
var y0 = (0, psdReader_1.readFixedPointPath32)(reader) * height;
var x0 = (0, psdReader_1.readFixedPointPath32)(reader) * width;
var y1 = (0, psdReader_1.readFixedPointPath32)(reader) * height;
var x1 = (0, psdReader_1.readFixedPointPath32)(reader) * width;
var y2 = (0, psdReader_1.readFixedPointPath32)(reader) * height;
var x2 = (0, psdReader_1.readFixedPointPath32)(reader) * width;
return [x0, y0, x1, y1, x2, y2];
}
exports.readBezierKnot = readBezierKnot;
function writeBezierKnot(writer, points, width, height) {
(0, psdWriter_1.writeFixedPointPath32)(writer, points[1] / height); // y0
(0, psdWriter_1.writeFixedPointPath32)(writer, points[0] / width); // x0
(0, psdWriter_1.writeFixedPointPath32)(writer, points[3] / height); // y1
(0, psdWriter_1.writeFixedPointPath32)(writer, points[2] / width); // x1
(0, psdWriter_1.writeFixedPointPath32)(writer, points[5] / height); // y2
(0, psdWriter_1.writeFixedPointPath32)(writer, points[4] / width); // x2
}
exports.booleanOperations = ['exclude', 'combine', 'subtract', 'intersect'];
function readVectorMask(reader, vectorMask, width, height, size) {
var end = reader.offset + size;
var paths = vectorMask.paths;
var path = undefined;
while ((end - reader.offset) >= 26) {
var selector = (0, psdReader_1.readUint16)(reader);
switch (selector) {
case 0: // Closed subpath length record
case 3: { // Open subpath length record
(0, psdReader_1.readUint16)(reader); // count
var boolOp = (0, psdReader_1.readInt16)(reader);
(0, psdReader_1.readUint16)(reader); // always 1 ?
(0, psdReader_1.skipBytes)(reader, 18);
// TODO: 'combine' here might be wrong
path = { open: selector === 3, operation: boolOp === -1 ? 'combine' : exports.booleanOperations[boolOp], knots: [] };
paths.push(path);
break;
}
case 1: // Closed subpath Bezier knot, linked
case 2: // Closed subpath Bezier knot, unlinked
case 4: // Open subpath Bezier knot, linked
case 5: // Open subpath Bezier knot, unlinked
path.knots.push({ linked: (selector === 1 || selector === 4), points: readBezierKnot(reader, width, height) });
break;
case 6: // Path fill rule record
(0, psdReader_1.skipBytes)(reader, 24);
break;
case 7: { // Clipboard record
// TODO: check if these need to be multiplied by document size
var top_1 = (0, psdReader_1.readFixedPointPath32)(reader);
var left = (0, psdReader_1.readFixedPointPath32)(reader);
var bottom = (0, psdReader_1.readFixedPointPath32)(reader);
var right = (0, psdReader_1.readFixedPointPath32)(reader);
var resolution = (0, psdReader_1.readFixedPointPath32)(reader);
(0, psdReader_1.skipBytes)(reader, 4);
vectorMask.clipboard = { top: top_1, left: left, bottom: bottom, right: right, resolution: resolution };
break;
}
case 8: // Initial fill rule record
vectorMask.fillStartsWithAllPixels = !!(0, psdReader_1.readUint16)(reader);
(0, psdReader_1.skipBytes)(reader, 22);
break;
default: throw new Error('Invalid vmsk section');
}
}
return paths;
}
exports.readVectorMask = readVectorMask;
addHandler('vmsk', hasKey('vectorMask'), function (reader, target, left, _a) {
var width = _a.width, height = _a.height;
if ((0, psdReader_1.readUint32)(reader) !== 3)
throw new Error('Invalid vmsk version');
target.vectorMask = { paths: [] };
var vectorMask = target.vectorMask;
var flags = (0, psdReader_1.readUint32)(reader);
vectorMask.invert = (flags & 1) !== 0;
vectorMask.notLink = (flags & 2) !== 0;
vectorMask.disable = (flags & 4) !== 0;
readVectorMask(reader, vectorMask, width, height, left());
// drawBezierPaths(vectorMask.paths, width, height, 'out.png');
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target, _a) {
var width = _a.width, height = _a.height;
var vectorMask = target.vectorMask;
var flags = (vectorMask.invert ? 1 : 0) |
(vectorMask.notLink ? 2 : 0) |
(vectorMask.disable ? 4 : 0);
(0, psdWriter_1.writeUint32)(writer, 3); // version
(0, psdWriter_1.writeUint32)(writer, flags);
// initial entry
(0, psdWriter_1.writeUint16)(writer, 6);
(0, psdWriter_1.writeZeros)(writer, 24);
var clipboard = vectorMask.clipboard;
if (clipboard) {
(0, psdWriter_1.writeUint16)(writer, 7);
(0, psdWriter_1.writeFixedPointPath32)(writer, clipboard.top);
(0, psdWriter_1.writeFixedPointPath32)(writer, clipboard.left);
(0, psdWriter_1.writeFixedPointPath32)(writer, clipboard.bottom);
(0, psdWriter_1.writeFixedPointPath32)(writer, clipboard.right);
(0, psdWriter_1.writeFixedPointPath32)(writer, clipboard.resolution);
(0, psdWriter_1.writeZeros)(writer, 4);
}
if (vectorMask.fillStartsWithAllPixels !== undefined) {
(0, psdWriter_1.writeUint16)(writer, 8);
(0, psdWriter_1.writeUint16)(writer, vectorMask.fillStartsWithAllPixels ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 22);
}
for (var _i = 0, _b = vectorMask.paths; _i < _b.length; _i++) {
var path = _b[_i];
(0, psdWriter_1.writeUint16)(writer, path.open ? 3 : 0);
(0, psdWriter_1.writeUint16)(writer, path.knots.length);
(0, psdWriter_1.writeUint16)(writer, Math.abs(exports.booleanOperations.indexOf(path.operation))); // default to 1 if not found
(0, psdWriter_1.writeUint16)(writer, 1);
(0, psdWriter_1.writeZeros)(writer, 18); // TODO: these are sometimes non-zero
var linkedKnot = path.open ? 4 : 1;
var unlinkedKnot = path.open ? 5 : 2;
for (var _c = 0, _d = path.knots; _c < _d.length; _c++) {
var _e = _d[_c], linked = _e.linked, points = _e.points;
(0, psdWriter_1.writeUint16)(writer, linked ? linkedKnot : unlinkedKnot);
writeBezierKnot(writer, points, width, height);
}
}
});
// TODO: need to write vmsk if has outline ?
addHandlerAlias('vsms', 'vmsk');
addHandler('vogk', hasKey('vectorOrigination'), function (reader, target, left) {
if ((0, psdReader_1.readInt32)(reader) !== 1)
throw new Error("Invalid vogk version");
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
target.vectorOrigination = { keyDescriptorList: [] };
for (var _i = 0, _a = desc.keyDescriptorList; _i < _a.length; _i++) {
var i = _a[_i];
var item = {};
if (i.keyShapeInvalidated != null)
item.keyShapeInvalidated = i.keyShapeInvalidated;
if (i.keyOriginType != null)
item.keyOriginType = i.keyOriginType;
if (i.keyOriginResolution != null)
item.keyOriginResolution = i.keyOriginResolution;
if (i.keyOriginShapeBBox) {
item.keyOriginShapeBoundingBox = {
top: (0, descriptor_1.parseUnits)(i.keyOriginShapeBBox['Top ']),
left: (0, descriptor_1.parseUnits)(i.keyOriginShapeBBox.Left),
bottom: (0, descriptor_1.parseUnits)(i.keyOriginShapeBBox.Btom),
right: (0, descriptor_1.parseUnits)(i.keyOriginShapeBBox.Rght),
};
}
var rectRadii = i.keyOriginRRectRadii;
if (rectRadii) {
item.keyOriginRRectRadii = {
topRight: (0, descriptor_1.parseUnits)(rectRadii.topRight),
topLeft: (0, descriptor_1.parseUnits)(rectRadii.topLeft),
bottomLeft: (0, descriptor_1.parseUnits)(rectRadii.bottomLeft),
bottomRight: (0, descriptor_1.parseUnits)(rectRadii.bottomRight),
};
}
var corners = i.keyOriginBoxCorners;
if (corners) {
item.keyOriginBoxCorners = [
{ x: corners.rectangleCornerA.Hrzn, y: corners.rectangleCornerA.Vrtc },
{ x: corners.rectangleCornerB.Hrzn, y: corners.rectangleCornerB.Vrtc },
{ x: corners.rectangleCornerC.Hrzn, y: corners.rectangleCornerC.Vrtc },
{ x: corners.rectangleCornerD.Hrzn, y: corners.rectangleCornerD.Vrtc },
];
}
var trnf = i.Trnf;
if (trnf) {
item.transform = [trnf.xx, trnf.xy, trnf.xy, trnf.yy, trnf.tx, trnf.ty];
}
target.vectorOrigination.keyDescriptorList.push(item);
}
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
target;
var orig = target.vectorOrigination;
var desc = { keyDescriptorList: [] };
for (var i = 0; i < orig.keyDescriptorList.length; i++) {
var item = orig.keyDescriptorList[i];
if (item.keyShapeInvalidated) {
desc.keyDescriptorList.push({ keyShapeInvalidated: true, keyOriginIndex: i });
}
else {
desc.keyDescriptorList.push({}); // we're adding keyOriginIndex at the end
var out = desc.keyDescriptorList[desc.keyDescriptorList.length - 1];
if (item.keyOriginType != null)
out.keyOriginType = item.keyOriginType;
if (item.keyOriginResolution != null)
out.keyOriginResolution = item.keyOriginResolution;
var radii = item.keyOriginRRectRadii;
if (radii) {
out.keyOriginRRectRadii = {
unitValueQuadVersion: 1,
topRight: (0, descriptor_1.unitsValue)(radii.topRight, 'topRight'),
topLeft: (0, descriptor_1.unitsValue)(radii.topLeft, 'topLeft'),
bottomLeft: (0, descriptor_1.unitsValue)(radii.bottomLeft, 'bottomLeft'),
bottomRight: (0, descriptor_1.unitsValue)(radii.bottomRight, 'bottomRight'),
};
}
var box = item.keyOriginShapeBoundingBox;
if (box) {
out.keyOriginShapeBBox = {
unitValueQuadVersion: 1,
'Top ': (0, descriptor_1.unitsValue)(box.top, 'top'),
Left: (0, descriptor_1.unitsValue)(box.left, 'left'),
Btom: (0, descriptor_1.unitsValue)(box.bottom, 'bottom'),
Rght: (0, descriptor_1.unitsValue)(box.right, 'right'),
};
}
var corners = item.keyOriginBoxCorners;
if (corners && corners.length === 4) {
out.keyOriginBoxCorners = {
rectangleCornerA: { Hrzn: corners[0].x, Vrtc: corners[0].y },
rectangleCornerB: { Hrzn: corners[1].x, Vrtc: corners[1].y },
rectangleCornerC: { Hrzn: corners[2].x, Vrtc: corners[2].y },
rectangleCornerD: { Hrzn: corners[3].x, Vrtc: corners[3].y },
};
}
var transform = item.transform;
if (transform && transform.length === 6) {
out.Trnf = {
xx: transform[0],
xy: transform[1],
yx: transform[2],
yy: transform[3],
tx: transform[4],
ty: transform[5],
};
}
out.keyOriginIndex = i;
}
}
(0, psdWriter_1.writeInt32)(writer, 1); // version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler('lmfx', function (target) { return target.effects !== undefined && hasMultiEffects(target.effects); }, function (reader, target, left, _, options) {
var version = (0, psdReader_1.readUint32)(reader);
if (version !== 0)
throw new Error('Invalid lmfx version');
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(info, false, 99, true));
// discard if read in 'lrFX' or 'lfx2' section
target.effects = (0, descriptor_1.parseEffects)(desc, !!options.logMissingFeatures);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target, _, options) {
var desc = (0, descriptor_1.serializeEffects)(target.effects, !!options.logMissingFeatures, true);
(0, psdWriter_1.writeUint32)(writer, 0); // version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler('lrFX', hasKey('effects'), function (reader, target, left) {
if (!target.effects)
target.effects = (0, effectsHelpers_1.readEffects)(reader);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
(0, effectsHelpers_1.writeEffects)(writer, target.effects);
});
addHandler('luni', hasKey('name'), function (reader, target, left) {
target.name = (0, psdReader_1.readUnicodeString)(reader);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeUnicodeString)(writer, target.name);
// writeUint16(writer, 0); // padding (but not extending string length)
});
addHandler('lnsr', hasKey('nameSource'), function (reader, target) { return target.nameSource = (0, psdReader_1.readSignature)(reader); }, function (writer, target) { return (0, psdWriter_1.writeSignature)(writer, target.nameSource); });
addHandler('lyid', hasKey('id'), function (reader, target) { return target.id = (0, psdReader_1.readUint32)(reader); }, function (writer, target, _psd, options) {
var id = target.id;
while (options.layerIds.has(id))
id += 100; // make sure we don't have duplicate layer ids
(0, psdWriter_1.writeUint32)(writer, id);
options.layerIds.add(id);
options.layerToId.set(target, id);
});
addHandler('lsct', hasKey('sectionDivider'), function (reader, target, left) {
target.sectionDivider = { type: (0, psdReader_1.readUint32)(reader) };
if (left()) {
(0, psdReader_1.checkSignature)(reader, '8BIM');
target.sectionDivider.key = (0, psdReader_1.readSignature)(reader);
}
if (left()) {
target.sectionDivider.subType = (0, psdReader_1.readUint32)(reader);
}
}, function (writer, target) {
(0, psdWriter_1.writeUint32)(writer, target.sectionDivider.type);
if (target.sectionDivider.key) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, target.sectionDivider.key);
if (target.sectionDivider.subType !== undefined) {
(0, psdWriter_1.writeUint32)(writer, target.sectionDivider.subType);
}
}
});
// it seems lsdk is used when there's a layer is nested more than 6 levels, but I don't know why?
// maybe some limitation of old version of PS?
addHandlerAlias('lsdk', 'lsct');
addHandler('clbl', hasKey('blendClippendElements'), function (reader, target) {
target.blendClippendElements = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.blendClippendElements ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
addHandler('infx', hasKey('blendInteriorElements'), function (reader, target) {
target.blendInteriorElements = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.blendInteriorElements ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
addHandler('knko', hasKey('knockout'), function (reader, target) {
target.knockout = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.knockout ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
addHandler('lmgm', hasKey('layerMaskAsGlobalMask'), function (reader, target) {
target.layerMaskAsGlobalMask = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.layerMaskAsGlobalMask ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
addHandler('lspf', hasKey('protected'), function (reader, target) {
var flags = (0, psdReader_1.readUint32)(reader);
target.protected = {
transparency: (flags & 0x01) !== 0,
composite: (flags & 0x02) !== 0,
position: (flags & 0x04) !== 0,
};
if (flags & 0x08)
target.protected.artboards = true;
}, function (writer, target) {
var flags = (target.protected.transparency ? 0x01 : 0) |
(target.protected.composite ? 0x02 : 0) |
(target.protected.position ? 0x04 : 0) |
(target.protected.artboards ? 0x08 : 0);
(0, psdWriter_1.writeUint32)(writer, flags);
});
addHandler('lclr', hasKey('layerColor'), function (reader, target) {
var color = (0, psdReader_1.readUint16)(reader);
(0, psdReader_1.skipBytes)(reader, 6);
target.layerColor = helpers_1.layerColors[color];
}, function (writer, target) {
var index = helpers_1.layerColors.indexOf(target.layerColor);
(0, psdWriter_1.writeUint16)(writer, index === -1 ? 0 : index);
(0, psdWriter_1.writeZeros)(writer, 6);
});
addHandler('shmd', function (target) { return target.timestamp !== undefined || target.animationFrames !== undefined ||
target.animationFrameFlags !== undefined || target.timeline !== undefined; }, function (reader, target, left, _, options) {
var count = (0, psdReader_1.readUint32)(reader);
var _loop_1 = function (i) {
(0, psdReader_1.checkSignature)(reader, '8BIM');
var key = (0, psdReader_1.readSignature)(reader);
(0, psdReader_1.readUint8)(reader); // copy
(0, psdReader_1.skipBytes)(reader, 3);
(0, psdReader_1.readSection)(reader, 1, function (left) {
if (key === 'cust') {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('cust', target.name, require('util').inspect(desc, false, 99, true));
if (desc.layerTime !== undefined)
target.timestamp = desc.layerTime;
}
else if (key === 'mlst') {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('mlst', target.name, require('util').inspect(desc, false, 99, true));
target.animationFrames = [];
for (var i_1 = 0; i_1 < desc.LaSt.length; i_1++) {
var f = desc.LaSt[i_1];
var frame = { frames: f.FrLs };
if (f.enab !== undefined)
frame.enable = f.enab;
if (f.Ofst)
frame.offset = (0, descriptor_1.horzVrtcToXY)(f.Ofst);
if (f.FXRf)
frame.referencePoint = (0, descriptor_1.horzVrtcToXY)(f.FXRf);
if (f.Lefx)
frame.effects = (0, descriptor_1.parseEffects)(f.Lefx, !!options.logMissingFeatures);
if (f.blendOptions && f.blendOptions.Opct)
frame.opacity = (0, descriptor_1.parsePercent)(f.blendOptions.Opct);
target.animationFrames.push(frame);
}
}
else if (key === 'mdyn') {
// frame flags
(0, psdReader_1.readUint16)(reader); // unknown
var propagate = (0, psdReader_1.readUint8)(reader);
var flags = (0, psdReader_1.readUint8)(reader);
target.animationFrameFlags = {
propagateFrameOne: !propagate,
unifyLayerPosition: (flags & 1) !== 0,
unifyLayerStyle: (flags & 2) !== 0,
unifyLayerVisibility: (flags & 4) !== 0,
};
}
else if (key === 'tmln') {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
var timeScope = desc.timeScope;
// console.log('tmln', target.name, target.id, require('util').inspect(desc, false, 99, true));
var timeline = {
start: timeScope.Strt,
duration: timeScope.duration,
inTime: timeScope.inTime,
outTime: timeScope.outTime,
autoScope: desc.autoScope,
audioLevel: desc.audioLevel,
};
if (desc.trackList) {
timeline.tracks = (0, descriptor_1.parseTrackList)(desc.trackList, !!options.logMissingFeatures);
}
target.timeline = timeline;
// console.log('tmln:result', target.name, target.id, require('util').inspect(timeline, false, 99, true));
}
else {
options.logDevFeatures && console.log('Unhandled "shmd" section key', key);
}
(0, psdReader_1.skipBytes)(reader, left());
});
};
for (var i = 0; i < count; i++) {
_loop_1(i);
}
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target, _, options) {
var animationFrames = target.animationFrames, animationFrameFlags = target.animationFrameFlags, timestamp = target.timestamp, timeline = target.timeline;
var count = 0;
if (animationFrames)
count++;
if (animationFrameFlags)
count++;
if (timeline)
count++;
if (timestamp !== undefined)
count++;
(0, psdWriter_1.writeUint32)(writer, count);
if (animationFrames) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'mlst');
(0, psdWriter_1.writeUint8)(writer, 0); // copy (always false)
(0, psdWriter_1.writeZeros)(writer, 3);
(0, psdWriter_1.writeSection)(writer, 2, function () {
var _a;
var desc = {
LaID: (_a = target.id) !== null && _a !== void 0 ? _a : 0,
LaSt: [],
};
for (var i = 0; i < animationFrames.length; i++) {
var f = animationFrames[i];
var frame = {};
if (f.enable !== undefined)
frame.enab = f.enable;
frame.FrLs = f.frames;
if (f.offset)
frame.Ofst = (0, descriptor_1.xyToHorzVrtc)(f.offset);
if (f.referencePoint)
frame.FXRf = (0, descriptor_1.xyToHorzVrtc)(f.referencePoint);
if (f.effects)
frame.Lefx = (0, descriptor_1.serializeEffects)(f.effects, false, false);
if (f.opacity !== undefined)
frame.blendOptions = { Opct: (0, descriptor_1.unitsPercent)(f.opacity) };
desc.LaSt.push(frame);
}
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}, true);
}
if (animationFrameFlags) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'mdyn');
(0, psdWriter_1.writeUint8)(writer, 0); // copy (always false)
(0, psdWriter_1.writeZeros)(writer, 3);
(0, psdWriter_1.writeSection)(writer, 2, function () {
(0, psdWriter_1.writeUint16)(writer, 0); // unknown
(0, psdWriter_1.writeUint8)(writer, animationFrameFlags.propagateFrameOne ? 0x0 : 0xf);
(0, psdWriter_1.writeUint8)(writer, (animationFrameFlags.unifyLayerPosition ? 1 : 0) |
(animationFrameFlags.unifyLayerStyle ? 2 : 0) |
(animationFrameFlags.unifyLayerVisibility ? 4 : 0));
});
}
if (timeline) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'tmln');
(0, psdWriter_1.writeUint8)(writer, 0); // copy (always false)
(0, psdWriter_1.writeZeros)(writer, 3);
(0, psdWriter_1.writeSection)(writer, 2, function () {
var desc = {
Vrsn: 1,
timeScope: {
Vrsn: 1,
Strt: timeline.start,
duration: timeline.duration,
inTime: timeline.inTime,
outTime: timeline.outTime,
},
autoScope: timeline.autoScope,
audioLevel: timeline.audioLevel,
};
if (timeline.tracks) {
desc.trackList = (0, descriptor_1.serializeTrackList)(timeline.tracks);
}
var id = options.layerToId.get(target) || target.id || 0;
if (!id)
throw new Error('You need to provide layer.id value whan writing document with animations');
desc.LyrI = id;
// console.log('WRITE:tmln', target.name, target.id, require('util').inspect(desc, false, 99, true));
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc, 'anim');
}, true);
}
if (timestamp !== undefined) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'cust');
(0, psdWriter_1.writeUint8)(writer, 0); // copy (always false)
(0, psdWriter_1.writeZeros)(writer, 3);
(0, psdWriter_1.writeSection)(writer, 2, function () {
var desc = {
layerTime: timestamp,
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'metadata', desc);
}, true);
}
});
addHandler('vstk', hasKey('vectorStroke'), function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
target.vectorStroke = {
strokeEnabled: desc.strokeEnabled,
fillEnabled: desc.fillEnabled,
lineWidth: (0, descriptor_1.parseUnits)(desc.strokeStyleLineWidth),
lineDashOffset: (0, descriptor_1.parseUnits)(desc.strokeStyleLineDashOffset),
miterLimit: desc.strokeStyleMiterLimit,
lineCapType: descriptor_1.strokeStyleLineCapType.decode(desc.strokeStyleLineCapType),
lineJoinType: descriptor_1.strokeStyleLineJoinType.decode(desc.strokeStyleLineJoinType),
lineAlignment: descriptor_1.strokeStyleLineAlignment.decode(desc.strokeStyleLineAlignment),
scaleLock: desc.strokeStyleScaleLock,
strokeAdjust: desc.strokeStyleStrokeAdjust,
lineDashSet: desc.strokeStyleLineDashSet.map(descriptor_1.parseUnits),
blendMode: descriptor_1.BlnM.decode(desc.strokeStyleBlendMode),
opacity: (0, descriptor_1.parsePercent)(desc.strokeStyleOpacity),
content: (0, descriptor_1.parseVectorContent)(desc.strokeStyleContent),
resolution: desc.strokeStyleResolution,
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a, _b, _c;
var stroke = target.vectorStroke;
var descriptor = {
strokeStyleVersion: 2,
strokeEnabled: !!stroke.strokeEnabled,
fillEnabled: !!stroke.fillEnabled,
strokeStyleLineWidth: stroke.lineWidth || { value: 3, units: 'Points' },
strokeStyleLineDashOffset: stroke.lineDashOffset || { value: 0, units: 'Points' },
strokeStyleMiterLimit: (_a = stroke.miterLimit) !== null && _a !== void 0 ? _a : 100,
strokeStyleLineCapType: descriptor_1.strokeStyleLineCapType.encode(stroke.lineCapType),
strokeStyleLineJoinType: descriptor_1.strokeStyleLineJoinType.encode(stroke.lineJoinType),
strokeStyleLineAlignment: descriptor_1.strokeStyleLineAlignment.encode(stroke.lineAlignment),
strokeStyleScaleLock: !!stroke.scaleLock,
strokeStyleStrokeAdjust: !!stroke.strokeAdjust,
strokeStyleLineDashSet: stroke.lineDashSet || [],
strokeStyleBlendMode: descriptor_1.BlnM.encode(stroke.blendMode),
strokeStyleOpacity: (0, descriptor_1.unitsPercent)((_b = stroke.opacity) !== null && _b !== void 0 ? _b : 1),
strokeStyleContent: (0, descriptor_1.serializeVectorContent)(stroke.content || { type: 'color', color: { r: 0, g: 0, b: 0 } }).descriptor,
strokeStyleResolution: (_c = stroke.resolution) !== null && _c !== void 0 ? _c : 72,
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'strokeStyle', descriptor);
});
addHandler('artb', // per-layer arboard info
hasKey('artboard'), function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
var rect = desc.artboardRect;
target.artboard = {
rect: { top: rect['Top '], left: rect.Left, bottom: rect.Btom, right: rect.Rght },
guideIndices: desc.guideIndeces,
presetName: desc.artboardPresetName,
color: (0, descriptor_1.parseColor)(desc['Clr ']),
backgroundType: desc.artboardBackgroundType,
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a;
var artboard = target.artboard;
var rect = artboard.rect;
var desc = {
artboardRect: { 'Top ': rect.top, Left: rect.left, Btom: rect.bottom, Rght: rect.right },
guideIndeces: artboard.guideIndices || [],
artboardPresetName: artboard.presetName || '',
'Clr ': (0, descriptor_1.serializeColor)(artboard.color),
artboardBackgroundType: (_a = artboard.backgroundType) !== null && _a !== void 0 ? _a : 1,
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'artboard', desc);
});
addHandler('sn2P', hasKey('usingAlignedRendering'), function (reader, target) { return target.usingAlignedRendering = !!(0, psdReader_1.readUint32)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint32)(writer, target.usingAlignedRendering ? 1 : 0); });
var placedLayerTypes = ['unknown', 'vector', 'raster', 'image stack'];
function parseWarp(warp) {
var _a, _b, _c, _d, _e, _f;
var result = {
style: descriptor_1.warpStyle.decode(warp.warpStyle),
value: warp.warpValue || 0,
perspective: warp.warpPerspective || 0,
perspectiveOther: warp.warpPerspectiveOther || 0,
rotate: descriptor_1.Ornt.decode(warp.warpRotate),
bounds: warp.bounds && {
top: (0, descriptor_1.parseUnitsOrNumber)(warp.bounds['Top ']),
left: (0, descriptor_1.parseUnitsOrNumber)(warp.bounds.Left),
bottom: (0, descriptor_1.parseUnitsOrNumber)(warp.bounds.Btom),
right: (0, descriptor_1.parseUnitsOrNumber)(warp.bounds.Rght),
},
uOrder: warp.uOrder,
vOrder: warp.vOrder,
};
if (warp.deformNumRows != null || warp.deformNumCols != null) {
result.deformNumRows = warp.deformNumRows;
result.deformNumCols = warp.deformNumCols;
}
var envelopeWarp = warp.customEnvelopeWarp;
if (envelopeWarp) {
result.customEnvelopeWarp = {
meshPoints: [],
};
var xs = ((_a = envelopeWarp.meshPoints.find(function (i) { return i.type === 'Hrzn'; })) === null || _a === void 0 ? void 0 : _a.values) || [];
var ys = ((_b = envelopeWarp.meshPoints.find(function (i) { return i.type === 'Vrtc'; })) === null || _b === void 0 ? void 0 : _b.values) || [];
for (var i = 0; i < xs.length; i++) {
result.customEnvelopeWarp.meshPoints.push({ x: xs[i], y: ys[i] });
}
if (envelopeWarp.quiltSliceX || envelopeWarp.quiltSliceY) {
result.customEnvelopeWarp.quiltSliceX = ((_d = (_c = envelopeWarp.quiltSliceX) === null || _c === void 0 ? void 0 : _c[0]) === null || _d === void 0 ? void 0 : _d.values) || [];
result.customEnvelopeWarp.quiltSliceY = ((_f = (_e = envelopeWarp.quiltSliceY) === null || _e === void 0 ? void 0 : _e[0]) === null || _f === void 0 ? void 0 : _f.values) || [];
}
}
return result;
}
function isQuiltWarp(warp) {
var _a, _b;
return warp.deformNumCols != null || warp.deformNumRows != null ||
((_a = warp.customEnvelopeWarp) === null || _a === void 0 ? void 0 : _a.quiltSliceX) || ((_b = warp.customEnvelopeWarp) === null || _b === void 0 ? void 0 : _b.quiltSliceY);
}
function encodeWarp(warp) {
var bounds = warp.bounds;
var desc = {
warpStyle: descriptor_1.warpStyle.encode(warp.style),
warpValue: warp.value || 0,
warpPerspective: warp.perspective || 0,
warpPerspectiveOther: warp.perspectiveOther || 0,
warpRotate: descriptor_1.Ornt.encode(warp.rotate),
bounds: {
'Top ': (0, descriptor_1.unitsValue)(bounds && bounds.top || { units: 'Pixels', value: 0 }, 'bounds.top'),
Left: (0, descriptor_1.unitsValue)(bounds && bounds.left || { units: 'Pixels', value: 0 }, 'bounds.left'),
Btom: (0, descriptor_1.unitsValue)(bounds && bounds.bottom || { units: 'Pixels', value: 0 }, 'bounds.bottom'),
Rght: (0, descriptor_1.unitsValue)(bounds && bounds.right || { units: 'Pixels', value: 0 }, 'bounds.right'),
},
uOrder: warp.uOrder || 0,
vOrder: warp.vOrder || 0,
};
var isQuilt = isQuiltWarp(warp);
if (isQuilt) {
var desc2 = desc;
desc2.deformNumRows = warp.deformNumRows || 0;
desc2.deformNumCols = warp.deformNumCols || 0;
}
var customEnvelopeWarp = warp.customEnvelopeWarp;
if (customEnvelopeWarp) {
var meshPoints = customEnvelopeWarp.meshPoints || [];
if (isQuilt) {
var desc2 = desc;
desc2.customEnvelopeWarp = {
quiltSliceX: [{
type: 'quiltSliceX',
values: customEnvelopeWarp.quiltSliceX || [],
}],
quiltSliceY: [{
type: 'quiltSliceY',
values: customEnvelopeWarp.quiltSliceY || [],
}],
meshPoints: [
{ type: 'Hrzn', values: meshPoints.map(function (p) { return p.x; }) },
{ type: 'Vrtc', values: meshPoints.map(function (p) { return p.y; }) },
],
};
}
else {
desc.customEnvelopeWarp = {
meshPoints: [
{ type: 'Hrzn', values: meshPoints.map(function (p) { return p.x; }) },
{ type: 'Vrtc', values: meshPoints.map(function (p) { return p.y; }) },
],
};
}
}
return desc;
}
addHandler('PlLd', hasKey('placedLayer'), function (reader, target, left) {
if ((0, psdReader_1.readSignature)(reader) !== 'plcL')
throw new Error("Invalid PlLd signature");
if ((0, psdReader_1.readInt32)(reader) !== 3)
throw new Error("Invalid PlLd version");
var id = (0, psdReader_1.readPascalString)(reader, 1);
var pageNumber = (0, psdReader_1.readInt32)(reader);
var totalPages = (0, psdReader_1.readInt32)(reader); // TODO: check how this works ?
(0, psdReader_1.readInt32)(reader); // anitAliasPolicy 16
var placedLayerType = (0, psdReader_1.readInt32)(reader); // 0 = unknown, 1 = vector, 2 = raster, 3 = image stack
if (!placedLayerTypes[placedLayerType])
throw new Error('Invalid PlLd type');
var transform = [];
for (var i = 0; i < 8; i++)
transform.push((0, psdReader_1.readFloat64)(reader)); // x, y of 4 corners of the transform
var warpVersion = (0, psdReader_1.readInt32)(reader);
if (warpVersion !== 0)
throw new Error("Invalid Warp version ".concat(warpVersion));
var warp = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.placedLayer = target.placedLayer || {
id: id,
type: placedLayerTypes[placedLayerType],
pageNumber: pageNumber,
totalPages: totalPages,
transform: transform,
warp: parseWarp(warp),
};
// console.log('PlLd warp', require('util').inspect(warp, false, 99, true));
// console.log('PlLd', require('util').inspect(target.placedLayer, false, 99, true));
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var placed = target.placedLayer;
(0, psdWriter_1.writeSignature)(writer, 'plcL');
(0, psdWriter_1.writeInt32)(writer, 3); // version
(0, psdWriter_1.writePascalString)(writer, placed.id, 1);
(0, psdWriter_1.writeInt32)(writer, 1); // pageNumber
(0, psdWriter_1.writeInt32)(writer, 1); // totalPages
(0, psdWriter_1.writeInt32)(writer, 16); // anitAliasPolicy
if (placedLayerTypes.indexOf(placed.type) === -1)
throw new Error('Invalid placedLayer type');
(0, psdWriter_1.writeInt32)(writer, placedLayerTypes.indexOf(placed.type));
for (var i = 0; i < 8; i++)
(0, psdWriter_1.writeFloat64)(writer, placed.transform[i]);
(0, psdWriter_1.writeInt32)(writer, 0); // warp version
var isQuilt = placed.warp && isQuiltWarp(placed.warp);
var type = isQuilt ? 'quiltWarp' : 'warp';
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', type, encodeWarp(placed.warp || {}), type);
});
addHandler('SoLd', hasKey('placedLayer'), function (reader, target, left) {
if ((0, psdReader_1.readSignature)(reader) !== 'soLD')
throw new Error("Invalid SoLd type");
if ((0, psdReader_1.readInt32)(reader) !== 4)
throw new Error("Invalid SoLd version");
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('SoLd', require('util').inspect(desc, false, 99, true));
// console.log('SoLd.warp', require('util').inspect(desc.warp, false, 99, true));
// console.log('SoLd.quiltWarp', require('util').inspect(desc.quiltWarp, false, 99, true));
target.placedLayer = {
id: desc.Idnt,
placed: desc.placed,
type: placedLayerTypes[desc.Type],
pageNumber: desc.PgNm,
totalPages: desc.totalPages,
frameStep: desc.frameStep,
duration: desc.duration,
frameCount: desc.frameCount,
transform: desc.Trnf,
width: desc['Sz '].Wdth,
height: desc['Sz '].Hght,
resolution: (0, descriptor_1.parseUnits)(desc.Rslt),
warp: parseWarp((desc.quiltWarp || desc.warp)),
};
if (desc.nonAffineTransform && desc.nonAffineTransform.some(function (x, i) { return x !== desc.Trnf[i]; })) {
target.placedLayer.nonAffineTransform = desc.nonAffineTransform;
}
if (desc.Crop)
target.placedLayer.crop = desc.Crop;
if (desc.comp)
target.placedLayer.comp = desc.comp;
if (desc.compInfo)
target.placedLayer.compInfo = desc.compInfo;
(0, psdReader_1.skipBytes)(reader, left()); // HACK
}, function (writer, target) {
var _a, _b;
(0, psdWriter_1.writeSignature)(writer, 'soLD');
(0, psdWriter_1.writeInt32)(writer, 4); // version
var placed = target.placedLayer;
var desc = __assign(__assign({ Idnt: placed.id, placed: (_a = placed.placed) !== null && _a !== void 0 ? _a : placed.id, PgNm: placed.pageNumber || 1, totalPages: placed.totalPages || 1 }, (placed.crop ? { Crop: placed.crop } : {})), { frameStep: placed.frameStep || { numerator: 0, denominator: 600 }, duration: placed.duration || { numerator: 0, denominator: 600 }, frameCount: placed.frameCount || 0, Annt: 16, Type: placedLayerTypes.indexOf(placed.type), Trnf: placed.transform, nonAffineTransform: (_b = placed.nonAffineTransform) !== null && _b !== void 0 ? _b : placed.transform, quiltWarp: {}, warp: encodeWarp(placed.warp || {}), 'Sz ': {
Wdth: placed.width || 0,
Hght: placed.height || 0, // TODO: find size ?
}, Rslt: placed.resolution ? (0, descriptor_1.unitsValue)(placed.resolution, 'resolution') : { units: 'Density', value: 72 } });
if (placed.warp && isQuiltWarp(placed.warp)) {
var quiltWarp = encodeWarp(placed.warp);
desc.quiltWarp = quiltWarp;
desc.warp = {
warpStyle: 'warpStyle.warpNone',
warpValue: quiltWarp.warpValue,
warpPerspective: quiltWarp.warpPerspective,
warpPerspectiveOther: quiltWarp.warpPerspectiveOther,
warpRotate: quiltWarp.warpRotate,
bounds: quiltWarp.bounds,
uOrder: quiltWarp.uOrder,
vOrder: quiltWarp.vOrder,
};
}
else {
delete desc.quiltWarp;
}
if (placed.comp)
desc.comp = placed.comp;
if (placed.compInfo)
desc.compInfo = placed.compInfo;
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc, desc.quiltWarp ? 'quiltWarp' : 'warp');
});
addHandler('fxrp', hasKey('referencePoint'), function (reader, target) {
target.referencePoint = {
x: (0, psdReader_1.readFloat64)(reader),
y: (0, psdReader_1.readFloat64)(reader),
};
}, function (writer, target) {
(0, psdWriter_1.writeFloat64)(writer, target.referencePoint.x);
(0, psdWriter_1.writeFloat64)(writer, target.referencePoint.y);
});
if (helpers_1.MOCK_HANDLERS) {
addHandler('Patt', function (target) { return target._Patt !== undefined; }, function (reader, target, left) {
// console.log('additional info: Patt');
target._Patt = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) { return false && (0, psdWriter_1.writeBytes)(writer, target._Patt); });
}
else {
addHandler('Patt', // TODO: handle also Pat2 & Pat3
function (// TODO: handle also Pat2 & Pat3
target) { return !target; }, function (reader, target, left) {
if (!left())
return;
(0, psdReader_1.skipBytes)(reader, left());
return; // not supported yet
target;
psdReader_1.readPattern;
// if (!target.patterns) target.patterns = [];
// target.patterns.push(readPattern(reader));
// skipBytes(reader, left());
}, function (_writer, _target) {
});
}
function readRect(reader) {
var top = (0, psdReader_1.readInt32)(reader);
var left = (0, psdReader_1.readInt32)(reader);
var bottom = (0, psdReader_1.readInt32)(reader);
var right = (0, psdReader_1.readInt32)(reader);
return { top: top, left: left, bottom: bottom, right: right };
}
function writeRect(writer, rect) {
(0, psdWriter_1.writeInt32)(writer, rect.top);
(0, psdWriter_1.writeInt32)(writer, rect.left);
(0, psdWriter_1.writeInt32)(writer, rect.bottom);
(0, psdWriter_1.writeInt32)(writer, rect.right);
}
addHandler('Anno', function (target) { return target.annotations !== undefined; }, function (reader, target, left) {
var major = (0, psdReader_1.readUint16)(reader);
var minor = (0, psdReader_1.readUint16)(reader);
if (major !== 2 || minor !== 1)
throw new Error('Invalid Anno version');
var count = (0, psdReader_1.readUint32)(reader);
var annotations = [];
for (var i = 0; i < count; i++) {
/*const length =*/ (0, psdReader_1.readUint32)(reader);
var type = (0, psdReader_1.readSignature)(reader);
var open_1 = !!(0, psdReader_1.readUint8)(reader);
/*const flags =*/ (0, psdReader_1.readUint8)(reader); // always 28
/*const optionalBlocks =*/ (0, psdReader_1.readUint16)(reader);
var iconLocation = readRect(reader);
var popupLocation = readRect(reader);
var color = (0, psdReader_1.readColor)(reader);
var author = (0, psdReader_1.readPascalString)(reader, 2);
var name_1 = (0, psdReader_1.readPascalString)(reader, 2);
var date = (0, psdReader_1.readPascalString)(reader, 2);
/*const contentLength =*/ (0, psdReader_1.readUint32)(reader);
/*const dataType =*/ (0, psdReader_1.readSignature)(reader);
var dataLength = (0, psdReader_1.readUint32)(reader);
var data = void 0;
if (type === 'txtA') {
if (dataLength >= 2 && (0, psdReader_1.readUint16)(reader) === 0xfeff) {
data = (0, psdReader_1.readUnicodeStringWithLength)(reader, (dataLength - 2) / 2);
}
else {
reader.offset -= 2;
data = (0, psdReader_1.readAsciiString)(reader, dataLength);
}
data = data.replace(/\r/g, '\n');
}
else if (type === 'sndA') {
data = (0, psdReader_1.readBytes)(reader, dataLength);
}
else {
throw new Error('Unknown annotation type');
}
annotations.push({
type: type === 'txtA' ? 'text' : 'sound',
open: open_1,
iconLocation: iconLocation,
popupLocation: popupLocation,
color: color,
author: author,
name: name_1,
date: date,
data: data,
});
}
target.annotations = annotations;
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var annotations = target.annotations;
(0, psdWriter_1.writeUint16)(writer, 2);
(0, psdWriter_1.writeUint16)(writer, 1);
(0, psdWriter_1.writeUint32)(writer, annotations.length);
for (var _i = 0, annotations_1 = annotations; _i < annotations_1.length; _i++) {
var annotation = annotations_1[_i];
var sound = annotation.type === 'sound';
if (sound && !(annotation.data instanceof Uint8Array))
throw new Error('Sound annotation data should be Uint8Array');
if (!sound && typeof annotation.data !== 'string')
throw new Error('Text annotation data should be string');
var lengthOffset = writer.offset;
(0, psdWriter_1.writeUint32)(writer, 0); // length
(0, psdWriter_1.writeSignature)(writer, sound ? 'sndA' : 'txtA');
(0, psdWriter_1.writeUint8)(writer, annotation.open ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, 28);
(0, psdWriter_1.writeUint16)(writer, 1);
writeRect(writer, annotation.iconLocation);
writeRect(writer, annotation.popupLocation);
(0, psdWriter_1.writeColor)(writer, annotation.color);
(0, psdWriter_1.writePascalString)(writer, annotation.author || '', 2);
(0, psdWriter_1.writePascalString)(writer, annotation.name || '', 2);
(0, psdWriter_1.writePascalString)(writer, annotation.date || '', 2);
var contentOffset = writer.offset;
(0, psdWriter_1.writeUint32)(writer, 0); // content length
(0, psdWriter_1.writeSignature)(writer, sound ? 'sndM' : 'txtC');
(0, psdWriter_1.writeUint32)(writer, 0); // data length
var dataOffset = writer.offset;
if (sound) {
(0, psdWriter_1.writeBytes)(writer, annotation.data);
}
else {
(0, psdWriter_1.writeUint16)(writer, 0xfeff); // unicode string indicator
var text = annotation.data.replace(/\n/g, '\r');
for (var i = 0; i < text.length; i++)
(0, psdWriter_1.writeUint16)(writer, text.charCodeAt(i));
}
writer.view.setUint32(lengthOffset, writer.offset - lengthOffset, false);
writer.view.setUint32(contentOffset, writer.offset - contentOffset, false);
writer.view.setUint32(dataOffset - 4, writer.offset - dataOffset, false);
}
});
addHandler('lnk2', function (target) { return !!target.linkedFiles && target.linkedFiles.length > 0; }, function (reader, target, left, _, options) {
var psd = target;
psd.linkedFiles = [];
while (left() > 8) {
var size = readLength64(reader); // size
var startOffset = reader.offset;
var type = (0, psdReader_1.readSignature)(reader);
var version = (0, psdReader_1.readInt32)(reader);
var id = (0, psdReader_1.readPascalString)(reader, 1);
var name_2 = (0, psdReader_1.readUnicodeString)(reader);
var fileType = (0, psdReader_1.readSignature)(reader).trim(); // ' ' if empty
var fileCreator = (0, psdReader_1.readSignature)(reader).trim(); // ' ' or '\0\0\0\0' if empty
var dataSize = readLength64(reader);
var hasFileOpenDescriptor = (0, psdReader_1.readUint8)(reader);
var fileOpenDescriptor = hasFileOpenDescriptor ? (0, descriptor_1.readVersionAndDescriptor)(reader) : undefined;
var linkedFileDescriptor = type === 'liFE' ? (0, descriptor_1.readVersionAndDescriptor)(reader) : undefined;
var file = { id: id, name: name_2, data: undefined };
if (fileType)
file.type = fileType;
if (fileCreator)
file.creator = fileCreator;
if (fileOpenDescriptor)
file.descriptor = fileOpenDescriptor;
if (type === 'liFE' && version > 3) {
var year = (0, psdReader_1.readInt32)(reader);
var month = (0, psdReader_1.readUint8)(reader);
var day = (0, psdReader_1.readUint8)(reader);
var hour = (0, psdReader_1.readUint8)(reader);
var minute = (0, psdReader_1.readUint8)(reader);
var seconds = (0, psdReader_1.readFloat64)(reader);
var wholeSeconds = Math.floor(seconds);
var ms = (seconds - wholeSeconds) * 1000;
file.time = new Date(year, month, day, hour, minute, wholeSeconds, ms);
}
var fileSize = type === 'liFE' ? readLength64(reader) : 0;
if (type === 'liFA')
(0, psdReader_1.skipBytes)(reader, 8);
if (type === 'liFD')
file.data = (0, psdReader_1.readBytes)(reader, dataSize);
if (version >= 5)
file.childDocumentID = (0, psdReader_1.readUnicodeString)(reader);
if (version >= 6)
file.assetModTime = (0, psdReader_1.readFloat64)(reader);
if (version >= 7)
file.assetLockedState = (0, psdReader_1.readUint8)(reader);
if (type === 'liFE')
file.data = (0, psdReader_1.readBytes)(reader, fileSize);
if (options.skipLinkedFilesData)
file.data = undefined;
psd.linkedFiles.push(file);
linkedFileDescriptor;
while (size % 4)
size++;
reader.offset = startOffset + size;
}
(0, psdReader_1.skipBytes)(reader, left()); // ?
}, function (writer, target) {
var psd = target;
for (var _i = 0, _a = psd.linkedFiles; _i < _a.length; _i++) {
var file = _a[_i];
var version = 2;
if (file.assetLockedState != null)
version = 7;
else if (file.assetModTime != null)
version = 6;
else if (file.childDocumentID != null)
version = 5;
// TODO: else if (file.time != null) version = 3; (only for liFE)
(0, psdWriter_1.writeUint32)(writer, 0);
(0, psdWriter_1.writeUint32)(writer, 0); // size
var sizeOffset = writer.offset;
(0, psdWriter_1.writeSignature)(writer, file.data ? 'liFD' : 'liFA');
(0, psdWriter_1.writeInt32)(writer, version);
(0, psdWriter_1.writePascalString)(writer, file.id || '', 1);
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, file.name || '');
(0, psdWriter_1.writeSignature)(writer, file.type ? "".concat(file.type, " ").substring(0, 4) : ' ');
(0, psdWriter_1.writeSignature)(writer, file.creator ? "".concat(file.creator, " ").substring(0, 4) : '\0\0\0\0');
writeLength64(writer, file.data ? file.data.byteLength : 0);
if (file.descriptor && file.descriptor.compInfo) {
var desc = {
compInfo: file.descriptor.compInfo,
};
(0, psdWriter_1.writeUint8)(writer, 1);
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}
else {
(0, psdWriter_1.writeUint8)(writer, 0);
}
if (file.data)
(0, psdWriter_1.writeBytes)(writer, file.data);
else
writeLength64(writer, 0);
if (version >= 5)
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, file.childDocumentID || '');
if (version >= 6)
(0, psdWriter_1.writeFloat64)(writer, file.assetModTime || 0);
if (version >= 7)
(0, psdWriter_1.writeUint8)(writer, file.assetLockedState || 0);
var size = writer.offset - sizeOffset;
writer.view.setUint32(sizeOffset - 4, size, false); // write size
while (size % 4) {
size++;
(0, psdWriter_1.writeUint8)(writer, 0);
}
}
});
addHandlerAlias('lnkD', 'lnk2');
addHandlerAlias('lnk3', 'lnk2');
// this seems to just be zero size block, ignore it
addHandler('lnkE', function (target) { return target._lnkE !== undefined; }, function (reader, target, left, _psds, options) {
if (options.logMissingFeatures && left()) {
console.log("Non-empty lnkE layer info (".concat(left(), " bytes)"));
}
if (helpers_1.MOCK_HANDLERS) {
target._lnkE = (0, psdReader_1.readBytes)(reader, left());
}
}, function (writer, target) { return helpers_1.MOCK_HANDLERS && (0, psdWriter_1.writeBytes)(writer, target._lnkE); });
addHandler('pths', hasKey('pathList'), function (reader, target) {
var descriptor = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.pathList = []; // TODO: read paths (find example with non-empty list)
descriptor;
// console.log('pths', descriptor); // TODO: remove this
}, function (writer, _target) {
var descriptor = {
pathList: [], // TODO: write paths
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'pathsDataClass', descriptor);
});
addHandler('lyvr', hasKey('version'), function (reader, target) { return target.version = (0, psdReader_1.readUint32)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint32)(writer, target.version); });
function adjustmentType(type) {
return function (target) { return !!target.adjustment && target.adjustment.type === type; };
}
addHandler('brit', adjustmentType('brightness/contrast'), function (reader, target, left) {
if (!target.adjustment) { // ignore if got one from CgEd block
target.adjustment = {
type: 'brightness/contrast',
brightness: (0, psdReader_1.readInt16)(reader),
contrast: (0, psdReader_1.readInt16)(reader),
meanValue: (0, psdReader_1.readInt16)(reader),
labColorOnly: !!(0, psdReader_1.readUint8)(reader),
useLegacy: true,
};
}
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a;
var info = target.adjustment;
(0, psdWriter_1.writeInt16)(writer, info.brightness || 0);
(0, psdWriter_1.writeInt16)(writer, info.contrast || 0);
(0, psdWriter_1.writeInt16)(writer, (_a = info.meanValue) !== null && _a !== void 0 ? _a : 127);
(0, psdWriter_1.writeUint8)(writer, info.labColorOnly ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 1);
});
function readLevelsChannel(reader) {
var shadowInput = (0, psdReader_1.readInt16)(reader);
var highlightInput = (0, psdReader_1.readInt16)(reader);
var shadowOutput = (0, psdReader_1.readInt16)(reader);
var highlightOutput = (0, psdReader_1.readInt16)(reader);
var midtoneInput = (0, psdReader_1.readInt16)(reader) / 100;
return { shadowInput: shadowInput, highlightInput: highlightInput, shadowOutput: shadowOutput, highlightOutput: highlightOutput, midtoneInput: midtoneInput };
}
function writeLevelsChannel(writer, channel) {
(0, psdWriter_1.writeInt16)(writer, channel.shadowInput);
(0, psdWriter_1.writeInt16)(writer, channel.highlightInput);
(0, psdWriter_1.writeInt16)(writer, channel.shadowOutput);
(0, psdWriter_1.writeInt16)(writer, channel.highlightOutput);
(0, psdWriter_1.writeInt16)(writer, Math.round(channel.midtoneInput * 100));
}
addHandler('levl', adjustmentType('levels'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 2)
throw new Error('Invalid levl version');
target.adjustment = __assign(__assign({}, target.adjustment), { type: 'levels', rgb: readLevelsChannel(reader), red: readLevelsChannel(reader), green: readLevelsChannel(reader), blue: readLevelsChannel(reader) });
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
var defaultChannel = {
shadowInput: 0,
highlightInput: 255,
shadowOutput: 0,
highlightOutput: 255,
midtoneInput: 1,
};
(0, psdWriter_1.writeUint16)(writer, 2); // version
writeLevelsChannel(writer, info.rgb || defaultChannel);
writeLevelsChannel(writer, info.red || defaultChannel);
writeLevelsChannel(writer, info.blue || defaultChannel);
writeLevelsChannel(writer, info.green || defaultChannel);
for (var i = 0; i < 59; i++)
writeLevelsChannel(writer, defaultChannel);
});
function readCurveChannel(reader) {
var nodes = (0, psdReader_1.readUint16)(reader);
var channel = [];
for (var j = 0; j < nodes; j++) {
var output = (0, psdReader_1.readInt16)(reader);
var input = (0, psdReader_1.readInt16)(reader);
channel.push({ input: input, output: output });
}
return channel;
}
function writeCurveChannel(writer, channel) {
(0, psdWriter_1.writeUint16)(writer, channel.length);
for (var _i = 0, channel_1 = channel; _i < channel_1.length; _i++) {
var n = channel_1[_i];
(0, psdWriter_1.writeUint16)(writer, n.output);
(0, psdWriter_1.writeUint16)(writer, n.input);
}
}
addHandler('curv', adjustmentType('curves'), function (reader, target, left) {
(0, psdReader_1.readUint8)(reader);
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid curv version');
(0, psdReader_1.readUint16)(reader);
var channels = (0, psdReader_1.readUint16)(reader);
var info = { type: 'curves' };
if (channels & 1)
info.rgb = readCurveChannel(reader);
if (channels & 2)
info.red = readCurveChannel(reader);
if (channels & 4)
info.green = readCurveChannel(reader);
if (channels & 8)
info.blue = readCurveChannel(reader);
target.adjustment = __assign(__assign({}, target.adjustment), info);
// ignoring, duplicate information
// checkSignature(reader, 'Crv ');
// const cVersion = readUint16(reader);
// readUint16(reader);
// const channelCount = readUint16(reader);
// for (let i = 0; i < channelCount; i++) {
// const index = readUint16(reader);
// const nodes = readUint16(reader);
// for (let j = 0; j < nodes; j++) {
// const output = readInt16(reader);
// const input = readInt16(reader);
// }
// }
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
var rgb = info.rgb, red = info.red, green = info.green, blue = info.blue;
var channels = 0;
var channelCount = 0;
if (rgb && rgb.length) {
channels |= 1;
channelCount++;
}
if (red && red.length) {
channels |= 2;
channelCount++;
}
if (green && green.length) {
channels |= 4;
channelCount++;
}
if (blue && blue.length) {
channels |= 8;
channelCount++;
}
(0, psdWriter_1.writeUint8)(writer, 0);
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, psdWriter_1.writeUint16)(writer, 0);
(0, psdWriter_1.writeUint16)(writer, channels);
if (rgb && rgb.length)
writeCurveChannel(writer, rgb);
if (red && red.length)
writeCurveChannel(writer, red);
if (green && green.length)
writeCurveChannel(writer, green);
if (blue && blue.length)
writeCurveChannel(writer, blue);
(0, psdWriter_1.writeSignature)(writer, 'Crv ');
(0, psdWriter_1.writeUint16)(writer, 4); // version
(0, psdWriter_1.writeUint16)(writer, 0);
(0, psdWriter_1.writeUint16)(writer, channelCount);
if (rgb && rgb.length) {
(0, psdWriter_1.writeUint16)(writer, 0);
writeCurveChannel(writer, rgb);
}
if (red && red.length) {
(0, psdWriter_1.writeUint16)(writer, 1);
writeCurveChannel(writer, red);
}
if (green && green.length) {
(0, psdWriter_1.writeUint16)(writer, 2);
writeCurveChannel(writer, green);
}
if (blue && blue.length) {
(0, psdWriter_1.writeUint16)(writer, 3);
writeCurveChannel(writer, blue);
}
(0, psdWriter_1.writeZeros)(writer, 2);
});
addHandler('expA', adjustmentType('exposure'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid expA version');
target.adjustment = __assign(__assign({}, target.adjustment), { type: 'exposure', exposure: (0, psdReader_1.readFloat32)(reader), offset: (0, psdReader_1.readFloat32)(reader), gamma: (0, psdReader_1.readFloat32)(reader) });
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, psdWriter_1.writeFloat32)(writer, info.exposure);
(0, psdWriter_1.writeFloat32)(writer, info.offset);
(0, psdWriter_1.writeFloat32)(writer, info.gamma);
(0, psdWriter_1.writeZeros)(writer, 2);
});
addHandler('vibA', adjustmentType('vibrance'), function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.adjustment = { type: 'vibrance' };
if (desc.vibrance !== undefined)
target.adjustment.vibrance = desc.vibrance;
if (desc.Strt !== undefined)
target.adjustment.saturation = desc.Strt;
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
var desc = {};
if (info.vibrance !== undefined)
desc.vibrance = info.vibrance;
if (info.saturation !== undefined)
desc.Strt = info.saturation;
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
function readHueChannel(reader) {
return {
a: (0, psdReader_1.readInt16)(reader),
b: (0, psdReader_1.readInt16)(reader),
c: (0, psdReader_1.readInt16)(reader),
d: (0, psdReader_1.readInt16)(reader),
hue: (0, psdReader_1.readInt16)(reader),
saturation: (0, psdReader_1.readInt16)(reader),
lightness: (0, psdReader_1.readInt16)(reader),
};
}
function writeHueChannel(writer, channel) {
var c = channel || {};
(0, psdWriter_1.writeInt16)(writer, c.a || 0);
(0, psdWriter_1.writeInt16)(writer, c.b || 0);
(0, psdWriter_1.writeInt16)(writer, c.c || 0);
(0, psdWriter_1.writeInt16)(writer, c.d || 0);
(0, psdWriter_1.writeInt16)(writer, c.hue || 0);
(0, psdWriter_1.writeInt16)(writer, c.saturation || 0);
(0, psdWriter_1.writeInt16)(writer, c.lightness || 0);
}
addHandler('hue2', adjustmentType('hue/saturation'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 2)
throw new Error('Invalid hue2 version');
target.adjustment = __assign(__assign({}, target.adjustment), { type: 'hue/saturation', master: readHueChannel(reader), reds: readHueChannel(reader), yellows: readHueChannel(reader), greens: readHueChannel(reader), cyans: readHueChannel(reader), blues: readHueChannel(reader), magentas: readHueChannel(reader) });
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 2); // version
writeHueChannel(writer, info.master);
writeHueChannel(writer, info.reds);
writeHueChannel(writer, info.yellows);
writeHueChannel(writer, info.greens);
writeHueChannel(writer, info.cyans);
writeHueChannel(writer, info.blues);
writeHueChannel(writer, info.magentas);
});
function readColorBalance(reader) {
return {
cyanRed: (0, psdReader_1.readInt16)(reader),
magentaGreen: (0, psdReader_1.readInt16)(reader),
yellowBlue: (0, psdReader_1.readInt16)(reader),
};
}
function writeColorBalance(writer, value) {
(0, psdWriter_1.writeInt16)(writer, value.cyanRed || 0);
(0, psdWriter_1.writeInt16)(writer, value.magentaGreen || 0);
(0, psdWriter_1.writeInt16)(writer, value.yellowBlue || 0);
}
addHandler('blnc', adjustmentType('color balance'), function (reader, target, left) {
target.adjustment = {
type: 'color balance',
shadows: readColorBalance(reader),
midtones: readColorBalance(reader),
highlights: readColorBalance(reader),
preserveLuminosity: !!(0, psdReader_1.readUint8)(reader),
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
writeColorBalance(writer, info.shadows || {});
writeColorBalance(writer, info.midtones || {});
writeColorBalance(writer, info.highlights || {});
(0, psdWriter_1.writeUint8)(writer, info.preserveLuminosity ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 1);
});
addHandler('blwh', adjustmentType('black & white'), function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.adjustment = {
type: 'black & white',
reds: desc['Rd '],
yellows: desc.Yllw,
greens: desc['Grn '],
cyans: desc['Cyn '],
blues: desc['Bl '],
magentas: desc.Mgnt,
useTint: !!desc.useTint,
presetKind: desc.bwPresetKind,
presetFileName: desc.blackAndWhitePresetFileName,
};
if (desc.tintColor !== undefined)
target.adjustment.tintColor = (0, descriptor_1.parseColor)(desc.tintColor);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
var desc = {
'Rd ': info.reds || 0,
Yllw: info.yellows || 0,
'Grn ': info.greens || 0,
'Cyn ': info.cyans || 0,
'Bl ': info.blues || 0,
Mgnt: info.magentas || 0,
useTint: !!info.useTint,
tintColor: (0, descriptor_1.serializeColor)(info.tintColor),
bwPresetKind: info.presetKind || 0,
blackAndWhitePresetFileName: info.presetFileName || '',
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler('phfl', adjustmentType('photo filter'), function (reader, target, left) {
var version = (0, psdReader_1.readUint16)(reader);
if (version !== 2 && version !== 3)
throw new Error('Invalid phfl version');
var color;
if (version === 2) {
color = (0, psdReader_1.readColor)(reader);
}
else { // version 3
// TODO: test this, this is probably wrong
color = {
l: (0, psdReader_1.readInt32)(reader) / 100,
a: (0, psdReader_1.readInt32)(reader) / 100,
b: (0, psdReader_1.readInt32)(reader) / 100,
};
}
target.adjustment = {
type: 'photo filter',
color: color,
density: (0, psdReader_1.readUint32)(reader) / 100,
preserveLuminosity: !!(0, psdReader_1.readUint8)(reader),
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 2); // version
(0, psdWriter_1.writeColor)(writer, info.color || { l: 0, a: 0, b: 0 });
(0, psdWriter_1.writeUint32)(writer, (info.density || 0) * 100);
(0, psdWriter_1.writeUint8)(writer, info.preserveLuminosity ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
function readMixrChannel(reader) {
var red = (0, psdReader_1.readInt16)(reader);
var green = (0, psdReader_1.readInt16)(reader);
var blue = (0, psdReader_1.readInt16)(reader);
(0, psdReader_1.skipBytes)(reader, 2);
var constant = (0, psdReader_1.readInt16)(reader);
return { red: red, green: green, blue: blue, constant: constant };
}
function writeMixrChannel(writer, channel) {
var c = channel || {};
(0, psdWriter_1.writeInt16)(writer, c.red);
(0, psdWriter_1.writeInt16)(writer, c.green);
(0, psdWriter_1.writeInt16)(writer, c.blue);
(0, psdWriter_1.writeZeros)(writer, 2);
(0, psdWriter_1.writeInt16)(writer, c.constant);
}
addHandler('mixr', adjustmentType('channel mixer'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid mixr version');
var adjustment = target.adjustment = __assign(__assign({}, target.adjustment), { type: 'channel mixer', monochrome: !!(0, psdReader_1.readUint16)(reader) });
if (!adjustment.monochrome) {
adjustment.red = readMixrChannel(reader);
adjustment.green = readMixrChannel(reader);
adjustment.blue = readMixrChannel(reader);
}
adjustment.gray = readMixrChannel(reader);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, psdWriter_1.writeUint16)(writer, info.monochrome ? 1 : 0);
if (info.monochrome) {
writeMixrChannel(writer, info.gray);
(0, psdWriter_1.writeZeros)(writer, 3 * 5 * 2);
}
else {
writeMixrChannel(writer, info.red);
writeMixrChannel(writer, info.green);
writeMixrChannel(writer, info.blue);
writeMixrChannel(writer, info.gray);
}
});
var colorLookupType = (0, helpers_1.createEnum)('colorLookupType', '3DLUT', {
'3dlut': '3DLUT',
abstractProfile: 'abstractProfile',
deviceLinkProfile: 'deviceLinkProfile',
});
var LUTFormatType = (0, helpers_1.createEnum)('LUTFormatType', 'look', {
look: 'LUTFormatLOOK',
cube: 'LUTFormatCUBE',
'3dl': 'LUTFormat3DL',
});
var colorLookupOrder = (0, helpers_1.createEnum)('colorLookupOrder', 'rgb', {
rgb: 'rgbOrder',
bgr: 'bgrOrder',
});
addHandler('clrL', adjustmentType('color lookup'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid clrL version');
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.adjustment = { type: 'color lookup' };
var info = target.adjustment;
if (desc.lookupType !== undefined)
info.lookupType = colorLookupType.decode(desc.lookupType);
if (desc['Nm '] !== undefined)
info.name = desc['Nm '];
if (desc.Dthr !== undefined)
info.dither = desc.Dthr;
if (desc.profile !== undefined)
info.profile = desc.profile;
if (desc.LUTFormat !== undefined)
info.lutFormat = LUTFormatType.decode(desc.LUTFormat);
if (desc.dataOrder !== undefined)
info.dataOrder = colorLookupOrder.decode(desc.dataOrder);
if (desc.tableOrder !== undefined)
info.tableOrder = colorLookupOrder.decode(desc.tableOrder);
if (desc.LUT3DFileData !== undefined)
info.lut3DFileData = desc.LUT3DFileData;
if (desc.LUT3DFileName !== undefined)
info.lut3DFileName = desc.LUT3DFileName;
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var info = target.adjustment;
var desc = {};
if (info.lookupType !== undefined)
desc.lookupType = colorLookupType.encode(info.lookupType);
if (info.name !== undefined)
desc['Nm '] = info.name;
if (info.dither !== undefined)
desc.Dthr = info.dither;
if (info.profile !== undefined)
desc.profile = info.profile;
if (info.lutFormat !== undefined)
desc.LUTFormat = LUTFormatType.encode(info.lutFormat);
if (info.dataOrder !== undefined)
desc.dataOrder = colorLookupOrder.encode(info.dataOrder);
if (info.tableOrder !== undefined)
desc.tableOrder = colorLookupOrder.encode(info.tableOrder);
if (info.lut3DFileData !== undefined)
desc.LUT3DFileData = info.lut3DFileData;
if (info.lut3DFileName !== undefined)
desc.LUT3DFileName = info.lut3DFileName;
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler('nvrt', adjustmentType('invert'), function (reader, target, left) {
target.adjustment = { type: 'invert' };
(0, psdReader_1.skipBytes)(reader, left());
}, function () {
// nothing to write here
});
addHandler('post', adjustmentType('posterize'), function (reader, target, left) {
target.adjustment = {
type: 'posterize',
levels: (0, psdReader_1.readUint16)(reader),
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a;
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, (_a = info.levels) !== null && _a !== void 0 ? _a : 4);
(0, psdWriter_1.writeZeros)(writer, 2);
});
addHandler('thrs', adjustmentType('threshold'), function (reader, target, left) {
target.adjustment = {
type: 'threshold',
level: (0, psdReader_1.readUint16)(reader),
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a;
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, (_a = info.level) !== null && _a !== void 0 ? _a : 128);
(0, psdWriter_1.writeZeros)(writer, 2);
});
var grdmColorModels = ['', '', '', 'rgb', 'hsb', '', 'lab'];
addHandler('grdm', adjustmentType('gradient map'), function (reader, target, left) {
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid grdm version');
var info = {
type: 'gradient map',
gradientType: 'solid',
};
info.reverse = !!(0, psdReader_1.readUint8)(reader);
info.dither = !!(0, psdReader_1.readUint8)(reader);
info.name = (0, psdReader_1.readUnicodeString)(reader);
info.colorStops = [];
info.opacityStops = [];
var stopsCount = (0, psdReader_1.readUint16)(reader);
for (var i = 0; i < stopsCount; i++) {
info.colorStops.push({
location: (0, psdReader_1.readUint32)(reader),
midpoint: (0, psdReader_1.readUint32)(reader) / 100,
color: (0, psdReader_1.readColor)(reader),
});
(0, psdReader_1.skipBytes)(reader, 2);
}
var opacityStopsCount = (0, psdReader_1.readUint16)(reader);
for (var i = 0; i < opacityStopsCount; i++) {
info.opacityStops.push({
location: (0, psdReader_1.readUint32)(reader),
midpoint: (0, psdReader_1.readUint32)(reader) / 100,
opacity: (0, psdReader_1.readUint16)(reader) / 0xff,
});
}
var expansionCount = (0, psdReader_1.readUint16)(reader);
if (expansionCount !== 2)
throw new Error('Invalid grdm expansion count');
var interpolation = (0, psdReader_1.readUint16)(reader);
info.smoothness = interpolation / 4096;
var length = (0, psdReader_1.readUint16)(reader);
if (length !== 32)
throw new Error('Invalid grdm length');
info.gradientType = (0, psdReader_1.readUint16)(reader) ? 'noise' : 'solid';
info.randomSeed = (0, psdReader_1.readUint32)(reader);
info.addTransparency = !!(0, psdReader_1.readUint16)(reader);
info.restrictColors = !!(0, psdReader_1.readUint16)(reader);
info.roughness = (0, psdReader_1.readUint32)(reader) / 4096;
info.colorModel = (grdmColorModels[(0, psdReader_1.readUint16)(reader)] || 'rgb');
info.min = [
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
];
info.max = [
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
(0, psdReader_1.readUint16)(reader) / 0x8000,
];
(0, psdReader_1.skipBytes)(reader, left());
for (var _i = 0, _a = info.colorStops; _i < _a.length; _i++) {
var s = _a[_i];
s.location /= interpolation;
}
for (var _b = 0, _c = info.opacityStops; _b < _c.length; _b++) {
var s = _c[_b];
s.location /= interpolation;
}
target.adjustment = info;
}, function (writer, target) {
var _a, _b, _c;
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, psdWriter_1.writeUint8)(writer, info.reverse ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, info.dither ? 1 : 0);
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, info.name || '');
(0, psdWriter_1.writeUint16)(writer, info.colorStops && info.colorStops.length || 0);
var interpolation = Math.round(((_a = info.smoothness) !== null && _a !== void 0 ? _a : 1) * 4096);
for (var _i = 0, _d = info.colorStops || []; _i < _d.length; _i++) {
var s = _d[_i];
(0, psdWriter_1.writeUint32)(writer, Math.round(s.location * interpolation));
(0, psdWriter_1.writeUint32)(writer, Math.round(s.midpoint * 100));
(0, psdWriter_1.writeColor)(writer, s.color);
(0, psdWriter_1.writeZeros)(writer, 2);
}
(0, psdWriter_1.writeUint16)(writer, info.opacityStops && info.opacityStops.length || 0);
for (var _e = 0, _f = info.opacityStops || []; _e < _f.length; _e++) {
var s = _f[_e];
(0, psdWriter_1.writeUint32)(writer, Math.round(s.location * interpolation));
(0, psdWriter_1.writeUint32)(writer, Math.round(s.midpoint * 100));
(0, psdWriter_1.writeUint16)(writer, Math.round(s.opacity * 0xff));
}
(0, psdWriter_1.writeUint16)(writer, 2); // expansion count
(0, psdWriter_1.writeUint16)(writer, interpolation);
(0, psdWriter_1.writeUint16)(writer, 32); // length
(0, psdWriter_1.writeUint16)(writer, info.gradientType === 'noise' ? 1 : 0);
(0, psdWriter_1.writeUint32)(writer, info.randomSeed || 0);
(0, psdWriter_1.writeUint16)(writer, info.addTransparency ? 1 : 0);
(0, psdWriter_1.writeUint16)(writer, info.restrictColors ? 1 : 0);
(0, psdWriter_1.writeUint32)(writer, Math.round(((_b = info.roughness) !== null && _b !== void 0 ? _b : 1) * 4096));
var colorModel = grdmColorModels.indexOf((_c = info.colorModel) !== null && _c !== void 0 ? _c : 'rgb');
(0, psdWriter_1.writeUint16)(writer, colorModel === -1 ? 3 : colorModel);
for (var i = 0; i < 4; i++)
(0, psdWriter_1.writeUint16)(writer, Math.round((info.min && info.min[i] || 0) * 0x8000));
for (var i = 0; i < 4; i++)
(0, psdWriter_1.writeUint16)(writer, Math.round((info.max && info.max[i] || 0) * 0x8000));
(0, psdWriter_1.writeZeros)(writer, 4);
});
function readSelectiveColors(reader) {
return {
c: (0, psdReader_1.readInt16)(reader),
m: (0, psdReader_1.readInt16)(reader),
y: (0, psdReader_1.readInt16)(reader),
k: (0, psdReader_1.readInt16)(reader),
};
}
function writeSelectiveColors(writer, cmyk) {
var c = cmyk || {};
(0, psdWriter_1.writeInt16)(writer, c.c);
(0, psdWriter_1.writeInt16)(writer, c.m);
(0, psdWriter_1.writeInt16)(writer, c.y);
(0, psdWriter_1.writeInt16)(writer, c.k);
}
addHandler('selc', adjustmentType('selective color'), function (reader, target) {
if ((0, psdReader_1.readUint16)(reader) !== 1)
throw new Error('Invalid selc version');
var mode = (0, psdReader_1.readUint16)(reader) ? 'absolute' : 'relative';
(0, psdReader_1.skipBytes)(reader, 8);
target.adjustment = {
type: 'selective color',
mode: mode,
reds: readSelectiveColors(reader),
yellows: readSelectiveColors(reader),
greens: readSelectiveColors(reader),
cyans: readSelectiveColors(reader),
blues: readSelectiveColors(reader),
magentas: readSelectiveColors(reader),
whites: readSelectiveColors(reader),
neutrals: readSelectiveColors(reader),
blacks: readSelectiveColors(reader),
};
}, function (writer, target) {
var info = target.adjustment;
(0, psdWriter_1.writeUint16)(writer, 1); // version
(0, psdWriter_1.writeUint16)(writer, info.mode === 'absolute' ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 8);
writeSelectiveColors(writer, info.reds);
writeSelectiveColors(writer, info.yellows);
writeSelectiveColors(writer, info.greens);
writeSelectiveColors(writer, info.cyans);
writeSelectiveColors(writer, info.blues);
writeSelectiveColors(writer, info.magentas);
writeSelectiveColors(writer, info.whites);
writeSelectiveColors(writer, info.neutrals);
writeSelectiveColors(writer, info.blacks);
});
addHandler('CgEd', function (target) {
var a = target.adjustment;
if (!a)
return false;
return (a.type === 'brightness/contrast' && !a.useLegacy) ||
((a.type === 'levels' || a.type === 'curves' || a.type === 'exposure' || a.type === 'channel mixer' ||
a.type === 'hue/saturation') && a.presetFileName !== undefined);
}, function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
if (desc.Vrsn !== 1)
throw new Error('Invalid CgEd version');
// this section can specify preset file name for other adjustment types
if ('presetFileName' in desc) {
target.adjustment = __assign(__assign({}, target.adjustment), { presetKind: desc.presetKind, presetFileName: desc.presetFileName });
}
else if ('curvesPresetFileName' in desc) {
target.adjustment = __assign(__assign({}, target.adjustment), { presetKind: desc.curvesPresetKind, presetFileName: desc.curvesPresetFileName });
}
else if ('mixerPresetFileName' in desc) {
target.adjustment = __assign(__assign({}, target.adjustment), { presetKind: desc.mixerPresetKind, presetFileName: desc.mixerPresetFileName });
}
else {
target.adjustment = {
type: 'brightness/contrast',
brightness: desc.Brgh,
contrast: desc.Cntr,
meanValue: desc.means,
useLegacy: !!desc.useLegacy,
labColorOnly: !!desc['Lab '],
auto: !!desc.Auto,
};
}
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a, _b, _c, _d;
var info = target.adjustment;
if (info.type === 'levels' || info.type === 'exposure' || info.type === 'hue/saturation') {
var desc = {
Vrsn: 1,
presetKind: (_a = info.presetKind) !== null && _a !== void 0 ? _a : 1,
presetFileName: info.presetFileName || '',
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}
else if (info.type === 'curves') {
var desc = {
Vrsn: 1,
curvesPresetKind: (_b = info.presetKind) !== null && _b !== void 0 ? _b : 1,
curvesPresetFileName: info.presetFileName || '',
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}
else if (info.type === 'channel mixer') {
var desc = {
Vrsn: 1,
mixerPresetKind: (_c = info.presetKind) !== null && _c !== void 0 ? _c : 1,
mixerPresetFileName: info.presetFileName || '',
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}
else if (info.type === 'brightness/contrast') {
var desc = {
Vrsn: 1,
Brgh: info.brightness || 0,
Cntr: info.contrast || 0,
means: (_d = info.meanValue) !== null && _d !== void 0 ? _d : 127,
'Lab ': !!info.labColorOnly,
useLegacy: !!info.useLegacy,
Auto: !!info.auto,
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
}
else {
throw new Error('Unhandled CgEd case');
}
});
addHandler('Txt2', hasKey('engineData'), function (reader, target, left) {
var data = (0, psdReader_1.readBytes)(reader, left());
target.engineData = (0, base64_js_1.fromByteArray)(data);
// const engineData = parseEngineData(data);
// console.log(require('util').inspect(engineData, false, 99, true));
// require('fs').writeFileSync('resources/engineData2Simple.txt', require('util').inspect(engineData, false, 99, false), 'utf8');
// require('fs').writeFileSync('test_data.json', JSON.stringify(ed, null, 2), 'utf8');
}, function (writer, target) {
var buffer = (0, base64_js_1.toByteArray)(target.engineData);
(0, psdWriter_1.writeBytes)(writer, buffer);
});
addHandler('FMsk', hasKey('filterMask'), function (reader, target) {
target.filterMask = {
colorSpace: (0, psdReader_1.readColor)(reader),
opacity: (0, psdReader_1.readUint16)(reader) / 0xff,
};
}, function (writer, target) {
var _a;
(0, psdWriter_1.writeColor)(writer, target.filterMask.colorSpace);
(0, psdWriter_1.writeUint16)(writer, (0, helpers_1.clamp)((_a = target.filterMask.opacity) !== null && _a !== void 0 ? _a : 1, 0, 1) * 0xff);
});
addHandler('artd', // document-wide artboard info
function (// document-wide artboard info
target) { return target.artboards !== undefined; }, function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.artboards = {
count: desc['Cnt '],
autoExpandOffset: { horizontal: desc.autoExpandOffset.Hrzn, vertical: desc.autoExpandOffset.Vrtc },
origin: { horizontal: desc.origin.Hrzn, vertical: desc.origin.Vrtc },
autoExpandEnabled: desc.autoExpandEnabled,
autoNestEnabled: desc.autoNestEnabled,
autoPositionEnabled: desc.autoPositionEnabled,
shrinkwrapOnSaveEnabled: desc.shrinkwrapOnSaveEnabled,
docDefaultNewArtboardBackgroundColor: (0, descriptor_1.parseColor)(desc.docDefaultNewArtboardBackgroundColor),
docDefaultNewArtboardBackgroundType: desc.docDefaultNewArtboardBackgroundType,
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var _a, _b, _c, _d, _e;
var artb = target.artboards;
var desc = {
'Cnt ': artb.count,
autoExpandOffset: artb.autoExpandOffset ? { Hrzn: artb.autoExpandOffset.horizontal, Vrtc: artb.autoExpandOffset.vertical } : { Hrzn: 0, Vrtc: 0 },
origin: artb.origin ? { Hrzn: artb.origin.horizontal, Vrtc: artb.origin.vertical } : { Hrzn: 0, Vrtc: 0 },
autoExpandEnabled: (_a = artb.autoExpandEnabled) !== null && _a !== void 0 ? _a : true,
autoNestEnabled: (_b = artb.autoNestEnabled) !== null && _b !== void 0 ? _b : true,
autoPositionEnabled: (_c = artb.autoPositionEnabled) !== null && _c !== void 0 ? _c : true,
shrinkwrapOnSaveEnabled: (_d = artb.shrinkwrapOnSaveEnabled) !== null && _d !== void 0 ? _d : true,
docDefaultNewArtboardBackgroundColor: (0, descriptor_1.serializeColor)(artb.docDefaultNewArtboardBackgroundColor),
docDefaultNewArtboardBackgroundType: (_e = artb.docDefaultNewArtboardBackgroundType) !== null && _e !== void 0 ? _e : 1,
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc, 'artd');
});
function hasMultiEffects(effects) {
return Object.keys(effects).map(function (key) { return effects[key]; }).some(function (v) { return Array.isArray(v) && v.length > 1; });
}
exports.hasMultiEffects = hasMultiEffects;
addHandler('lfx2', function (target) { return target.effects !== undefined && !hasMultiEffects(target.effects); }, function (reader, target, left, _, options) {
var version = (0, psdReader_1.readUint32)(reader);
if (version !== 0)
throw new Error("Invalid lfx2 version");
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
// TODO: don't discard if we got it from lmfx
// discard if read in 'lrFX' section
target.effects = (0, descriptor_1.parseEffects)(desc, !!options.logMissingFeatures);
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target, _, options) {
var desc = (0, descriptor_1.serializeEffects)(target.effects, !!options.logMissingFeatures, false);
// console.log(require('util').inspect(desc, false, 99, true));
(0, psdWriter_1.writeUint32)(writer, 0); // version
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler('cinf', hasKey('compositorUsed'), function (reader, target, left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
target.compositorUsed = {
description: desc.description,
reason: desc.reason,
engine: desc.Engn.split('.')[1],
enableCompCore: desc.enableCompCore.split('.')[1],
enableCompCoreGPU: desc.enableCompCoreGPU.split('.')[1],
compCoreSupport: desc.compCoreSupport.split('.')[1],
compCoreGPUSupport: desc.compCoreGPUSupport.split('.')[1],
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var cinf = target.compositorUsed;
var desc = {
Vrsn: { major: 1, minor: 0, fix: 0 },
// psVersion: { major: 22, minor: 3, fix: 1 }, // TESTING
description: cinf.description,
reason: cinf.reason,
Engn: "Engn.".concat(cinf.engine),
enableCompCore: "enable.".concat(cinf.enableCompCore),
enableCompCoreGPU: "enable.".concat(cinf.enableCompCoreGPU),
// enableCompCoreThreads: `enable.feature`, // TESTING
compCoreSupport: "reason.".concat(cinf.compCoreSupport),
compCoreGPUSupport: "reason.".concat(cinf.compCoreGPUSupport),
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
// extension settings ?, ignore it
addHandler('extn', function (target) { return target._extn !== undefined; }, function (reader, target) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
if (helpers_1.MOCK_HANDLERS)
target._extn = desc;
}, function (writer, target) {
// TODO: need to add correct types for desc fields (resources/src.psd)
if (helpers_1.MOCK_HANDLERS)
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', target._extn);
});
addHandler('iOpa', hasKey('fillOpacity'), function (reader, target) {
target.fillOpacity = (0, psdReader_1.readUint8)(reader) / 0xff;
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.fillOpacity * 0xff);
(0, psdWriter_1.writeZeros)(writer, 3);
});
addHandler('brst', hasKey('channelBlendingRestrictions'), function (reader, target, left) {
target.channelBlendingRestrictions = [];
while (left() > 4) {
target.channelBlendingRestrictions.push((0, psdReader_1.readInt32)(reader));
}
}, function (writer, target) {
for (var _i = 0, _a = target.channelBlendingRestrictions; _i < _a.length; _i++) {
var channel = _a[_i];
(0, psdWriter_1.writeInt32)(writer, channel);
}
});
addHandler('tsly', hasKey('transparencyShapesLayer'), function (reader, target) {
target.transparencyShapesLayer = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 3);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.transparencyShapesLayer ? 1 : 0);
(0, psdWriter_1.writeZeros)(writer, 3);
});
},{"./descriptor":4,"./effectsHelpers":5,"./engineData":6,"./helpers":7,"./psdReader":11,"./psdWriter":12,"./text":13,"base64-js":15}],3:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.readCsh = void 0;
var additionalInfo_1 = require("./additionalInfo");
var psdReader_1 = require("./psdReader");
function readCsh(buffer) {
var reader = (0, psdReader_1.createReader)(buffer.buffer, buffer.byteOffset, buffer.byteLength);
var csh = { shapes: [] };
(0, psdReader_1.checkSignature)(reader, 'cush');
if ((0, psdReader_1.readUint32)(reader) !== 2)
throw new Error('Invalid version');
var count = (0, psdReader_1.readUint32)(reader);
for (var i = 0; i < count; i++) {
var name_1 = (0, psdReader_1.readUnicodeString)(reader);
while (reader.offset % 4)
reader.offset++; // pad to 4byte bounds
if ((0, psdReader_1.readUint32)(reader) !== 1)
throw new Error('Invalid shape version');
var size = (0, psdReader_1.readUint32)(reader);
var end = reader.offset + size;
var id = (0, psdReader_1.readPascalString)(reader, 1);
// this might not be correct ???
var y1 = (0, psdReader_1.readUint32)(reader);
var x1 = (0, psdReader_1.readUint32)(reader);
var y2 = (0, psdReader_1.readUint32)(reader);
var x2 = (0, psdReader_1.readUint32)(reader);
var width = x2 - x1;
var height = y2 - y1;
var mask = { paths: [] };
(0, additionalInfo_1.readVectorMask)(reader, mask, width, height, end - reader.offset);
csh.shapes.push(__assign({ name: name_1, id: id, width: width, height: height }, mask));
reader.offset = end;
}
return csh;
}
exports.readCsh = readCsh;
},{"./additionalInfo":2,"./psdReader":11}],4:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.strokeStyleLineAlignment = exports.strokeStyleLineJoinType = exports.strokeStyleLineCapType = exports.FrFl = exports.FStl = exports.ClrS = exports.gradientInterpolationMethodType = exports.stdTrackID = exports.animInterpStyleEnum = exports.GrdT = exports.IGSr = exports.BETE = exports.BESs = exports.bvlT = exports.BESl = exports.BlnM = exports.warpStyle = exports.Annt = exports.Ornt = exports.textGridding = exports.unitsValue = exports.unitsPercent = exports.unitsAngle = exports.parseUnitsToNumber = exports.parseUnitsOrNumber = exports.parseUnits = exports.parsePercentOrAngle = exports.parsePercent = exports.parseAngle = exports.serializeColor = exports.parseColor = exports.serializeVectorContent = exports.parseVectorContent = exports.serializeTrackList = exports.parseTrackList = exports.parseEffects = exports.serializeEffects = exports.xyToHorzVrtc = exports.horzVrtcToXY = exports.writeVersionAndDescriptor = exports.readVersionAndDescriptor = exports.writeDescriptorStructure = exports.readDescriptorStructure = exports.readAsciiStringOrClassId = exports.setLogErrors = void 0;
var helpers_1 = require("./helpers");
var psdReader_1 = require("./psdReader");
var psdWriter_1 = require("./psdWriter");
function revMap(map) {
var result = {};
Object.keys(map).forEach(function (key) { return result[map[key]] = key; });
return result;
}
var unitsMap = {
'#Ang': 'Angle',
'#Rsl': 'Density',
'#Rlt': 'Distance',
'#Nne': 'None',
'#Prc': 'Percent',
'#Pxl': 'Pixels',
'#Mlm': 'Millimeters',
'#Pnt': 'Points',
'RrPi': 'Picas',
'RrIn': 'Inches',
'RrCm': 'Centimeters',
};
var unitsMapRev = revMap(unitsMap);
var logErrors = false;
function setLogErrors(value) {
logErrors = value;
}
exports.setLogErrors = setLogErrors;
function makeType(name, classID) {
return { name: name, classID: classID };
}
var nullType = makeType('', 'null');
var fieldToExtType = {
strokeStyleContent: makeType('', 'solidColorLayer'),
// printProofSetup: makeType('校样设置', 'proofSetup'), // TESTING
printProofSetup: makeType('Proof Setup', 'proofSetup'),
patternFill: makeType('', 'patternFill'),
Grad: makeType('Gradient', 'Grdn'),
ebbl: makeType('', 'ebbl'),
SoFi: makeType('', 'SoFi'),
GrFl: makeType('', 'GrFl'),
sdwC: makeType('', 'RGBC'),
hglC: makeType('', 'RGBC'),
'Clr ': makeType('', 'RGBC'),
'tintColor': makeType('', 'RGBC'),
Ofst: makeType('', 'Pnt '),
ChFX: makeType('', 'ChFX'),
MpgS: makeType('', 'ShpC'),
DrSh: makeType('', 'DrSh'),
IrSh: makeType('', 'IrSh'),
OrGl: makeType('', 'OrGl'),
IrGl: makeType('', 'IrGl'),
TrnS: makeType('', 'ShpC'),
Ptrn: makeType('', 'Ptrn'),
FrFX: makeType('', 'FrFX'),
phase: makeType('', 'Pnt '),
frameStep: nullType,
duration: nullType,
workInTime: nullType,
workOutTime: nullType,
audioClipGroupList: nullType,
bounds: makeType('', 'Rctn'),
customEnvelopeWarp: makeType('', 'customEnvelopeWarp'),
warp: makeType('', 'warp'),
'Sz ': makeType('', 'Pnt '),
origin: makeType('', 'Pnt '),
autoExpandOffset: makeType('', 'Pnt '),
keyOriginShapeBBox: makeType('', 'unitRect'),
Vrsn: nullType,
psVersion: nullType,
docDefaultNewArtboardBackgroundColor: makeType('', 'RGBC'),
artboardRect: makeType('', 'classFloatRect'),
keyOriginRRectRadii: makeType('', 'radii'),
keyOriginBoxCorners: nullType,
rectangleCornerA: makeType('', 'Pnt '),
rectangleCornerB: makeType('', 'Pnt '),
rectangleCornerC: makeType('', 'Pnt '),
rectangleCornerD: makeType('', 'Pnt '),
compInfo: nullType,
Trnf: makeType('Transform', 'Trnf'),
quiltWarp: makeType('', 'quiltWarp'),
generatorSettings: nullType,
crema: nullType,
FrIn: nullType,
blendOptions: nullType,
FXRf: nullType,
Lefx: nullType,
time: nullType,
animKey: nullType,
timeScope: nullType,
inTime: nullType,
outTime: nullType,
sheetStyle: nullType,
translation: nullType,
Skew: nullType,
'Lnk ': makeType('', 'ExternalFileLink'),
frameReader: makeType('', 'FrameReader'),
effectParams: makeType('', 'motionTrackEffectParams'),
};
var fieldToArrayExtType = {
'Crv ': makeType('', 'CrPt'),
Clrs: makeType('', 'Clrt'),
Trns: makeType('', 'TrnS'),
keyDescriptorList: nullType,
solidFillMulti: makeType('', 'SoFi'),
gradientFillMulti: makeType('', 'GrFl'),
dropShadowMulti: makeType('', 'DrSh'),
innerShadowMulti: makeType('', 'IrSh'),
frameFXMulti: makeType('', 'FrFX'),
FrIn: nullType,
FSts: nullType,
LaSt: nullType,
sheetTimelineOptions: nullType,
trackList: makeType('', 'animationTrack'),
globalTrackList: makeType('', 'animationTrack'),
keyList: nullType,
audioClipGroupList: nullType,
audioClipList: nullType,
};
var typeToField = {
'TEXT': [
'Txt ', 'printerName', 'Nm ', 'Idnt', 'blackAndWhitePresetFileName', 'LUT3DFileName',
'presetFileName', 'curvesPresetFileName', 'mixerPresetFileName', 'placed', 'description', 'reason',
'artboardPresetName', 'json', 'groupID', 'clipID', 'relPath', 'fullPath', 'mediaDescriptor',
],
'tdta': ['EngineData', 'LUT3DFileData'],
'long': [
'TextIndex', 'RndS', 'Mdpn', 'Smth', 'Lctn', 'strokeStyleVersion', 'LaID', 'Vrsn', 'Cnt ',
'Brgh', 'Cntr', 'means', 'vibrance', 'Strt', 'bwPresetKind', 'presetKind', 'comp', 'compID', 'originalCompID',
'curvesPresetKind', 'mixerPresetKind', 'uOrder', 'vOrder', 'PgNm', 'totalPages', 'Crop',
'numerator', 'denominator', 'frameCount', 'Annt', 'keyOriginType', 'unitValueQuadVersion',
'keyOriginIndex', 'major', 'minor', 'fix', 'docDefaultNewArtboardBackgroundType', 'artboardBackgroundType',
'numModifyingFX', 'deformNumRows', 'deformNumCols', 'FrID', 'FrDl', 'FsID', 'LCnt', 'AFrm', 'AFSt',
'numBefore', 'numAfter', 'Spcn', 'minOpacity', 'maxOpacity', 'BlnM', 'sheetID', 'gblA', 'globalAltitude',
'descVersion', 'frameReaderType', 'LyrI', 'zoomOrigin',
],
'enum': [
'textGridding', 'Ornt', 'warpStyle', 'warpRotate', 'Inte', 'Bltn', 'ClrS',
'sdwM', 'hglM', 'bvlT', 'bvlS', 'bvlD', 'Md ', 'glwS', 'GrdF', 'GlwT',
'strokeStyleLineCapType', 'strokeStyleLineJoinType', 'strokeStyleLineAlignment',
'strokeStyleBlendMode', 'PntT', 'Styl', 'lookupType', 'LUTFormat', 'dataOrder',
'tableOrder', 'enableCompCore', 'enableCompCoreGPU', 'compCoreSupport', 'compCoreGPUSupport', 'Engn',
'enableCompCoreThreads', 'gs99', 'FrDs', 'trackID', 'animInterpStyle',
],
'bool': [
'PstS', 'printSixteenBit', 'masterFXSwitch', 'enab', 'uglg', 'antialiasGloss',
'useShape', 'useTexture', 'uglg', 'antialiasGloss', 'useShape',
'useTexture', 'Algn', 'Rvrs', 'Dthr', 'Invr', 'VctC', 'ShTr', 'layerConceals',
'strokeEnabled', 'fillEnabled', 'strokeStyleScaleLock', 'strokeStyleStrokeAdjust',
'hardProof', 'MpBl', 'paperWhite', 'useLegacy', 'Auto', 'Lab ', 'useTint', 'keyShapeInvalidated',
'autoExpandEnabled', 'autoNestEnabled', 'autoPositionEnabled', 'shrinkwrapOnSaveEnabled',
'present', 'showInDialog', 'overprint', 'sheetDisclosed', 'lightsDisclosed', 'meshesDisclosed',
'materialsDisclosed', 'hasMotion', 'muted', 'Effc', 'selected', 'autoScope', 'fillCanvas',
],
'doub': [
'warpValue', 'warpPerspective', 'warpPerspectiveOther', 'Intr', 'Wdth', 'Hght',
'strokeStyleMiterLimit', 'strokeStyleResolution', 'layerTime', 'keyOriginResolution',
'xx', 'xy', 'yx', 'yy', 'tx', 'ty', 'FrGA', 'frameRate', 'audioLevel', 'rotation',
],
'UntF': [
'Scl ', 'sdwO', 'hglO', 'lagl', 'Lald', 'srgR', 'blur', 'Sftn', 'Opct', 'Dstn', 'Angl',
'Ckmt', 'Nose', 'Inpr', 'ShdN', 'strokeStyleLineWidth', 'strokeStyleLineDashOffset',
'strokeStyleOpacity', 'H ', 'Top ', 'Left', 'Btom', 'Rght', 'Rslt',
'topRight', 'topLeft', 'bottomLeft', 'bottomRight',
],
'VlLs': [
'Crv ', 'Clrs', 'Mnm ', 'Mxm ', 'Trns', 'pathList', 'strokeStyleLineDashSet', 'FrLs',
'LaSt', 'Trnf', 'nonAffineTransform', 'keyDescriptorList', 'guideIndeces', 'gradientFillMulti',
'solidFillMulti', 'frameFXMulti', 'innerShadowMulti', 'dropShadowMulti', 'FrIn', 'FSts', 'FsFr',
'sheetTimelineOptions', 'audioClipList', 'trackList', 'globalTrackList', 'keyList', 'audioClipList',
],
'ObAr': ['meshPoints', 'quiltSliceX', 'quiltSliceY'],
'obj ': ['null'],
};
var channels = [
'Rd ', 'Grn ', 'Bl ', 'Yllw', 'Ylw ', 'Cyn ', 'Mgnt', 'Blck', 'Gry ', 'Lmnc', 'A ', 'B ',
];
var fieldToArrayType = {
'Mnm ': 'long',
'Mxm ': 'long',
'FrLs': 'long',
'strokeStyleLineDashSet': 'UntF',
'Trnf': 'doub',
'nonAffineTransform': 'doub',
'keyDescriptorList': 'Objc',
'gradientFillMulti': 'Objc',
'solidFillMulti': 'Objc',
'frameFXMulti': 'Objc',
'innerShadowMulti': 'Objc',
'dropShadowMulti': 'Objc',
'LaSt': 'Objc',
'FrIn': 'Objc',
'FSts': 'Objc',
'FsFr': 'long',
'blendOptions': 'Objc',
'sheetTimelineOptions': 'Objc',
'keyList': 'Objc',
};
var fieldToType = {};
for (var _i = 0, _a = Object.keys(typeToField); _i < _a.length; _i++) {
var type = _a[_i];
for (var _b = 0, _c = typeToField[type]; _b < _c.length; _b++) {
var field = _c[_b];
fieldToType[field] = type;
}
}
for (var _d = 0, _e = Object.keys(fieldToExtType); _d < _e.length; _d++) {
var field = _e[_d];
if (!fieldToType[field])
fieldToType[field] = 'Objc';
}
for (var _f = 0, _g = Object.keys(fieldToArrayExtType); _f < _g.length; _f++) {
var field = _g[_f];
fieldToArrayType[field] = 'Objc';
}
function getTypeByKey(key, value, root, parent) {
if (key === 'Sz ') {
return ('Wdth' in value) ? 'Objc' : (('units' in value) ? 'UntF' : 'doub');
}
else if (key === 'Type') {
return typeof value === 'string' ? 'enum' : 'long';
}
else if (key === 'AntA') {
return typeof value === 'string' ? 'enum' : 'bool';
}
else if ((key === 'Hrzn' || key === 'Vrtc') && parent.Type === 'keyType.Pstn') {
return 'long';
}
else if (key === 'Hrzn' || key === 'Vrtc' || key === 'Top ' || key === 'Left' || key === 'Btom' || key === 'Rght') {
return typeof value === 'number' ? 'doub' : 'UntF';
}
else if (key === 'Vrsn') {
return typeof value === 'number' ? 'long' : 'Objc';
}
else if (key === 'Rd ' || key === 'Grn ' || key === 'Bl ') {
return root === 'artd' ? 'long' : 'doub';
}
else if (key === 'Trnf') {
return Array.isArray(value) ? 'VlLs' : 'Objc';
}
else {
return fieldToType[key];
}
}
function readAsciiStringOrClassId(reader) {
var length = (0, psdReader_1.readInt32)(reader);
return (0, psdReader_1.readAsciiString)(reader, length || 4);
}
exports.readAsciiStringOrClassId = readAsciiStringOrClassId;
function writeAsciiStringOrClassId(writer, value) {
if (value.length === 4 && value !== 'warp' && value !== 'time' && value !== 'hold') {
// write classId
(0, psdWriter_1.writeInt32)(writer, 0);
(0, psdWriter_1.writeSignature)(writer, value);
}
else {
// write ascii string
(0, psdWriter_1.writeInt32)(writer, value.length);
for (var i = 0; i < value.length; i++) {
(0, psdWriter_1.writeUint8)(writer, value.charCodeAt(i));
}
}
}
function readDescriptorStructure(reader) {
var object = {};
// object.__struct =
readClassStructure(reader);
var itemsCount = (0, psdReader_1.readUint32)(reader);
// console.log('//', object.__struct);
for (var i = 0; i < itemsCount; i++) {
var key = readAsciiStringOrClassId(reader);
var type = (0, psdReader_1.readSignature)(reader);
// console.log(`> '${key}' '${type}'`);
var data = readOSType(reader, type);
// if (!getTypeByKey(key, data)) console.log(`> '${key}' '${type}'`, data);
object[key] = data;
}
return object;
}
exports.readDescriptorStructure = readDescriptorStructure;
function writeDescriptorStructure(writer, name, classId, value, root) {
if (logErrors && !classId)
console.log('Missing classId for: ', name, classId, value);
// write class structure
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, name);
writeAsciiStringOrClassId(writer, classId);
var keys = Object.keys(value);
(0, psdWriter_1.writeUint32)(writer, keys.length);
for (var _i = 0, keys_1 = keys; _i < keys_1.length; _i++) {
var key = keys_1[_i];
var type = getTypeByKey(key, value[key], root, value);
var extType = fieldToExtType[key];
if (key === 'Scl ' && 'Hrzn' in value[key]) {
type = 'Objc';
extType = nullType;
}
else if (key === 'audioClipGroupList' && keys.length === 1) {
type = 'VlLs';
}
else if ((key === 'Strt' || key === 'Brgh') && 'H ' in value) {
type = 'doub';
}
else if (key === 'Strt') {
type = 'Objc';
extType = nullType;
}
else if (channels.indexOf(key) !== -1) {
type = (classId === 'RGBC' && root !== 'artd') ? 'doub' : 'long';
}
else if (key === 'profile') {
type = classId === 'printOutput' ? 'TEXT' : 'tdta';
}
else if (key === 'strokeStyleContent') {
if (value[key]['Clr ']) {
extType = makeType('', 'solidColorLayer');
}
else if (value[key].Grad) {
extType = makeType('', 'gradientLayer');
}
else if (value[key].Ptrn) {
extType = makeType('', 'patternLayer');
}
else {
logErrors && console.log('Invalid strokeStyleContent value', value[key]);
}
}
else if (key === 'bounds' && root === 'quiltWarp') {
extType = makeType('', 'classFloatRect');
}
if (extType && extType.classID === 'RGBC') {
if ('H ' in value[key])
extType = { classID: 'HSBC', name: '' };
// TODO: other color spaces
}
writeAsciiStringOrClassId(writer, key);
(0, psdWriter_1.writeSignature)(writer, type || 'long');
writeOSType(writer, type || 'long', value[key], key, extType, root);
if (logErrors && !type)
console.log("Missing descriptor field type for: '".concat(key, "' in"), value);
}
}
exports.writeDescriptorStructure = writeDescriptorStructure;
function readOSType(reader, type) {
switch (type) {
case 'obj ': // Reference
return readReferenceStructure(reader);
case 'Objc': // Descriptor
case 'GlbO': // GlobalObject same as Descriptor
return readDescriptorStructure(reader);
case 'VlLs': { // List
var length_1 = (0, psdReader_1.readInt32)(reader);
var items = [];
for (var i = 0; i < length_1; i++) {
var type_1 = (0, psdReader_1.readSignature)(reader);
// console.log(' >', type);
items.push(readOSType(reader, type_1));
}
return items;
}
case 'doub': // Double
return (0, psdReader_1.readFloat64)(reader);
case 'UntF': { // Unit double
var units = (0, psdReader_1.readSignature)(reader);
var value = (0, psdReader_1.readFloat64)(reader);
if (!unitsMap[units])
throw new Error("Invalid units: ".concat(units));
return { units: unitsMap[units], value: value };
}
case 'UnFl': { // Unit float
var units = (0, psdReader_1.readSignature)(reader);
var value = (0, psdReader_1.readFloat32)(reader);
if (!unitsMap[units])
throw new Error("Invalid units: ".concat(units));
return { units: unitsMap[units], value: value };
}
case 'TEXT': // String
return (0, psdReader_1.readUnicodeString)(reader);
case 'enum': { // Enumerated
var type_2 = readAsciiStringOrClassId(reader);
var value = readAsciiStringOrClassId(reader);
return "".concat(type_2, ".").concat(value);
}
case 'long': // Integer
return (0, psdReader_1.readInt32)(reader);
case 'comp': { // Large Integer
var low = (0, psdReader_1.readUint32)(reader);
var high = (0, psdReader_1.readUint32)(reader);
return { low: low, high: high };
}
case 'bool': // Boolean
return !!(0, psdReader_1.readUint8)(reader);
case 'type': // Class
case 'GlbC': // Class
return readClassStructure(reader);
case 'alis': { // Alias
var length_2 = (0, psdReader_1.readInt32)(reader);
return (0, psdReader_1.readAsciiString)(reader, length_2);
}
case 'tdta': { // Raw Data
var length_3 = (0, psdReader_1.readInt32)(reader);
return (0, psdReader_1.readBytes)(reader, length_3);
}
case 'ObAr': { // Object array
(0, psdReader_1.readInt32)(reader); // version: 16
(0, psdReader_1.readUnicodeString)(reader); // name: ''
readAsciiStringOrClassId(reader); // 'rationalPoint'
var length_4 = (0, psdReader_1.readInt32)(reader);
var items = [];
for (var i = 0; i < length_4; i++) {
var type1 = readAsciiStringOrClassId(reader); // type Hrzn | Vrtc
(0, psdReader_1.readSignature)(reader); // UnFl
(0, psdReader_1.readSignature)(reader); // units ? '#Pxl'
var valuesCount = (0, psdReader_1.readInt32)(reader);
var values = [];
for (var j = 0; j < valuesCount; j++) {
values.push((0, psdReader_1.readFloat64)(reader));
}
items.push({ type: type1, values: values });
}
return items;
}
case 'Pth ': { // File path
/*const length =*/ (0, psdReader_1.readInt32)(reader);
var sig = (0, psdReader_1.readSignature)(reader);
/*const pathSize =*/ (0, psdReader_1.readInt32LE)(reader);
var charsCount = (0, psdReader_1.readInt32LE)(reader);
var path = (0, psdReader_1.readUnicodeStringWithLength)(reader, charsCount);
return { sig: sig, path: path };
}
default:
throw new Error("Invalid TySh descriptor OSType: ".concat(type, " at ").concat(reader.offset.toString(16)));
}
}
var ObArTypes = {
meshPoints: 'rationalPoint',
quiltSliceX: 'UntF',
quiltSliceY: 'UntF',
};
function writeOSType(writer, type, value, key, extType, root) {
switch (type) {
case 'obj ': // Reference
writeReferenceStructure(writer, key, value);
break;
case 'Objc': // Descriptor
case 'GlbO': // GlobalObject same as Descriptor
if (!extType)
throw new Error("Missing ext type for: '".concat(key, "' (").concat(JSON.stringify(value), ")"));
writeDescriptorStructure(writer, extType.name, extType.classID, value, root);
break;
case 'VlLs': // List
(0, psdWriter_1.writeInt32)(writer, value.length);
for (var i = 0; i < value.length; i++) {
var type_3 = fieldToArrayType[key];
(0, psdWriter_1.writeSignature)(writer, type_3 || 'long');
writeOSType(writer, type_3 || 'long', value[i], '', fieldToArrayExtType[key], root);
if (logErrors && !type_3)
console.log("Missing descriptor array type for: '".concat(key, "' in"), value);
}
break;
case 'doub': // Double
(0, psdWriter_1.writeFloat64)(writer, value);
break;
case 'UntF': // Unit double
if (!unitsMapRev[value.units])
throw new Error("Invalid units: ".concat(value.units, " in ").concat(key));
(0, psdWriter_1.writeSignature)(writer, unitsMapRev[value.units]);
(0, psdWriter_1.writeFloat64)(writer, value.value);
break;
case 'UnFl': // Unit float
if (!unitsMapRev[value.units])
throw new Error("Invalid units: ".concat(value.units, " in ").concat(key));
(0, psdWriter_1.writeSignature)(writer, unitsMapRev[value.units]);
(0, psdWriter_1.writeFloat32)(writer, value.value);
break;
case 'TEXT': // String
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, value);
break;
case 'enum': { // Enumerated
var _a = value.split('.'), _type = _a[0], val = _a[1];
writeAsciiStringOrClassId(writer, _type);
writeAsciiStringOrClassId(writer, val);
break;
}
case 'long': // Integer
(0, psdWriter_1.writeInt32)(writer, value);
break;
// case 'comp': // Large Integer
// writeLargeInteger(reader);
case 'bool': // Boolean
(0, psdWriter_1.writeUint8)(writer, value ? 1 : 0);
break;
// case 'type': // Class
// case 'GlbC': // Class
// writeClassStructure(reader);
// case 'alis': // Alias
// writeAliasStructure(reader);
case 'tdta': // Raw Data
(0, psdWriter_1.writeInt32)(writer, value.byteLength);
(0, psdWriter_1.writeBytes)(writer, value);
break;
case 'ObAr': { // Object array
(0, psdWriter_1.writeInt32)(writer, 16); // version
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, ''); // name
var type_4 = ObArTypes[key];
if (!type_4)
throw new Error("Not implemented ObArType for: ".concat(key));
writeAsciiStringOrClassId(writer, type_4);
(0, psdWriter_1.writeInt32)(writer, value.length);
for (var i = 0; i < value.length; i++) {
writeAsciiStringOrClassId(writer, value[i].type); // Hrzn | Vrtc
(0, psdWriter_1.writeSignature)(writer, 'UnFl');
(0, psdWriter_1.writeSignature)(writer, '#Pxl');
(0, psdWriter_1.writeInt32)(writer, value[i].values.length);
for (var j = 0; j < value[i].values.length; j++) {
(0, psdWriter_1.writeFloat64)(writer, value[i].values[j]);
}
}
break;
}
// case 'Pth ': // File path
// writeFilePath(reader);
default:
throw new Error("Not implemented descriptor OSType: ".concat(type));
}
}
function readReferenceStructure(reader) {
var itemsCount = (0, psdReader_1.readInt32)(reader);
var items = [];
for (var i = 0; i < itemsCount; i++) {
var type = (0, psdReader_1.readSignature)(reader);
switch (type) {
case 'prop': { // Property
readClassStructure(reader);
var keyID = readAsciiStringOrClassId(reader);
items.push(keyID);
break;
}
case 'Clss': // Class
items.push(readClassStructure(reader));
break;
case 'Enmr': { // Enumerated Reference
readClassStructure(reader);
var typeID = readAsciiStringOrClassId(reader);
var value = readAsciiStringOrClassId(reader);
items.push("".concat(typeID, ".").concat(value));
break;
}
case 'rele': { // Offset
// const { name, classID } =
readClassStructure(reader);
items.push((0, psdReader_1.readUint32)(reader));
break;
}
case 'Idnt': // Identifier
items.push((0, psdReader_1.readInt32)(reader));
break;
case 'indx': // Index
items.push((0, psdReader_1.readInt32)(reader));
break;
case 'name': { // Name
readClassStructure(reader);
items.push((0, psdReader_1.readUnicodeString)(reader));
break;
}
default:
throw new Error("Invalid descriptor reference type: ".concat(type));
}
}
return items;
}
function writeReferenceStructure(writer, _key, items) {
(0, psdWriter_1.writeInt32)(writer, items.length);
for (var i = 0; i < items.length; i++) {
var value = items[i];
var type = 'unknown';
if (typeof value === 'string') {
if (/^[a-z]+\.[a-z]+$/i.test(value)) {
type = 'Enmr';
}
else {
type = 'name';
}
}
(0, psdWriter_1.writeSignature)(writer, type);
switch (type) {
// case 'prop': // Property
// case 'Clss': // Class
case 'Enmr': { // Enumerated Reference
var _a = value.split('.'), typeID = _a[0], enumValue = _a[1];
writeClassStructure(writer, '\0', typeID);
writeAsciiStringOrClassId(writer, typeID);
writeAsciiStringOrClassId(writer, enumValue);
break;
}
// case 'rele': // Offset
// case 'Idnt': // Identifier
// case 'indx': // Index
case 'name': { // Name
writeClassStructure(writer, '\0', 'Lyr ');
(0, psdWriter_1.writeUnicodeString)(writer, value + '\0');
break;
}
default:
throw new Error("Invalid descriptor reference type: ".concat(type));
}
}
return items;
}
function readClassStructure(reader) {
var name = (0, psdReader_1.readUnicodeString)(reader);
var classID = readAsciiStringOrClassId(reader);
// console.log({ name, classID });
return { name: name, classID: classID };
}
function writeClassStructure(writer, name, classID) {
(0, psdWriter_1.writeUnicodeString)(writer, name);
writeAsciiStringOrClassId(writer, classID);
}
function readVersionAndDescriptor(reader) {
var version = (0, psdReader_1.readUint32)(reader);
if (version !== 16)
throw new Error("Invalid descriptor version: ".concat(version));
var desc = readDescriptorStructure(reader);
// console.log(require('util').inspect(desc, false, 99, true));
return desc;
}
exports.readVersionAndDescriptor = readVersionAndDescriptor;
function writeVersionAndDescriptor(writer, name, classID, descriptor, root) {
if (root === void 0) { root = ''; }
(0, psdWriter_1.writeUint32)(writer, 16); // version
writeDescriptorStructure(writer, name, classID, descriptor, root);
}
exports.writeVersionAndDescriptor = writeVersionAndDescriptor;
function horzVrtcToXY(hv) {
return { x: hv.Hrzn, y: hv.Vrtc };
}
exports.horzVrtcToXY = horzVrtcToXY;
function xyToHorzVrtc(xy) {
return { Hrzn: xy.x, Vrtc: xy.y };
}
exports.xyToHorzVrtc = xyToHorzVrtc;
function parseFxObject(fx) {
var stroke = {
enabled: !!fx.enab,
position: exports.FStl.decode(fx.Styl),
fillType: exports.FrFl.decode(fx.PntT),
blendMode: exports.BlnM.decode(fx['Md ']),
opacity: parsePercent(fx.Opct),
size: parseUnits(fx['Sz ']),
};
if (fx.present !== undefined)
stroke.present = fx.present;
if (fx.showInDialog !== undefined)
stroke.showInDialog = fx.showInDialog;
if (fx.overprint !== undefined)
stroke.overprint = fx.overprint;
if (fx['Clr '])
stroke.color = parseColor(fx['Clr ']);
if (fx.Grad)
stroke.gradient = parseGradientContent(fx);
if (fx.Ptrn)
stroke.pattern = parsePatternContent(fx);
return stroke;
}
function serializeFxObject(stroke) {
var FrFX = {};
FrFX.enab = !!stroke.enabled;
if (stroke.present !== undefined)
FrFX.present = !!stroke.present;
if (stroke.showInDialog !== undefined)
FrFX.showInDialog = !!stroke.showInDialog;
FrFX.Styl = exports.FStl.encode(stroke.position);
FrFX.PntT = exports.FrFl.encode(stroke.fillType);
FrFX['Md '] = exports.BlnM.encode(stroke.blendMode);
FrFX.Opct = unitsPercent(stroke.opacity);
FrFX['Sz '] = unitsValue(stroke.size, 'size');
if (stroke.color)
FrFX['Clr '] = serializeColor(stroke.color);
if (stroke.gradient)
FrFX = __assign(__assign({}, FrFX), serializeGradientContent(stroke.gradient));
if (stroke.pattern)
FrFX = __assign(__assign({}, FrFX), serializePatternContent(stroke.pattern));
if (stroke.overprint !== undefined)
FrFX.overprint = !!stroke.overprint;
return FrFX;
}
function serializeEffects(e, log, multi) {
var _a, _b, _c, _d, _e, _f, _g, _h, _j, _k, _l, _m, _o;
var info = multi ? {
'Scl ': unitsPercent((_a = e.scale) !== null && _a !== void 0 ? _a : 1),
masterFXSwitch: !e.disabled,
} : {
masterFXSwitch: !e.disabled,
'Scl ': unitsPercent((_b = e.scale) !== null && _b !== void 0 ? _b : 1),
};
var arrayKeys = ['dropShadow', 'innerShadow', 'solidFill', 'gradientOverlay', 'stroke'];
for (var _i = 0, arrayKeys_1 = arrayKeys; _i < arrayKeys_1.length; _i++) {
var key = arrayKeys_1[_i];
if (e[key] && !Array.isArray(e[key]))
throw new Error("".concat(key, " should be an array"));
}
if (((_c = e.dropShadow) === null || _c === void 0 ? void 0 : _c[0]) && !multi)
info.DrSh = serializeEffectObject(e.dropShadow[0], 'dropShadow', log);
if (((_d = e.dropShadow) === null || _d === void 0 ? void 0 : _d[0]) && multi)
info.dropShadowMulti = e.dropShadow.map(function (i) { return serializeEffectObject(i, 'dropShadow', log); });
if (((_e = e.innerShadow) === null || _e === void 0 ? void 0 : _e[0]) && !multi)
info.IrSh = serializeEffectObject(e.innerShadow[0], 'innerShadow', log);
if (((_f = e.innerShadow) === null || _f === void 0 ? void 0 : _f[0]) && multi)
info.innerShadowMulti = e.innerShadow.map(function (i) { return serializeEffectObject(i, 'innerShadow', log); });
if (e.outerGlow)
info.OrGl = serializeEffectObject(e.outerGlow, 'outerGlow', log);
if (((_g = e.solidFill) === null || _g === void 0 ? void 0 : _g[0]) && multi)
info.solidFillMulti = e.solidFill.map(function (i) { return serializeEffectObject(i, 'solidFill', log); });
if (((_h = e.gradientOverlay) === null || _h === void 0 ? void 0 : _h[0]) && multi)
info.gradientFillMulti = e.gradientOverlay.map(function (i) { return serializeEffectObject(i, 'gradientOverlay', log); });
if (((_j = e.stroke) === null || _j === void 0 ? void 0 : _j[0]) && multi)
info.frameFXMulti = e.stroke.map(function (i) { return serializeFxObject(i); });
if (e.innerGlow)
info.IrGl = serializeEffectObject(e.innerGlow, 'innerGlow', log);
if (e.bevel)
info.ebbl = serializeEffectObject(e.bevel, 'bevel', log);
if (((_k = e.solidFill) === null || _k === void 0 ? void 0 : _k[0]) && !multi)
info.SoFi = serializeEffectObject(e.solidFill[0], 'solidFill', log);
if (e.patternOverlay)
info.patternFill = serializeEffectObject(e.patternOverlay, 'patternOverlay', log);
if (((_l = e.gradientOverlay) === null || _l === void 0 ? void 0 : _l[0]) && !multi)
info.GrFl = serializeEffectObject(e.gradientOverlay[0], 'gradientOverlay', log);
if (e.satin)
info.ChFX = serializeEffectObject(e.satin, 'satin', log);
if (((_m = e.stroke) === null || _m === void 0 ? void 0 : _m[0]) && !multi)
info.FrFX = serializeFxObject((_o = e.stroke) === null || _o === void 0 ? void 0 : _o[0]);
if (multi) {
info.numModifyingFX = 0;
for (var _p = 0, _q = Object.keys(e); _p < _q.length; _p++) {
var key = _q[_p];
var value = e[key];
if (Array.isArray(value)) {
for (var _r = 0, value_1 = value; _r < value_1.length; _r++) {
var effect = value_1[_r];
if (effect.enabled)
info.numModifyingFX++;
}
}
}
}
return info;
}
exports.serializeEffects = serializeEffects;
function parseEffects(info, log) {
var effects = {};
if (!info.masterFXSwitch)
effects.disabled = true;
if (info['Scl '])
effects.scale = parsePercent(info['Scl ']);
if (info.DrSh)
effects.dropShadow = [parseEffectObject(info.DrSh, log)];
if (info.dropShadowMulti)
effects.dropShadow = info.dropShadowMulti.map(function (i) { return parseEffectObject(i, log); });
if (info.IrSh)
effects.innerShadow = [parseEffectObject(info.IrSh, log)];
if (info.innerShadowMulti)
effects.innerShadow = info.innerShadowMulti.map(function (i) { return parseEffectObject(i, log); });
if (info.OrGl)
effects.outerGlow = parseEffectObject(info.OrGl, log);
if (info.IrGl)
effects.innerGlow = parseEffectObject(info.IrGl, log);
if (info.ebbl)
effects.bevel = parseEffectObject(info.ebbl, log);
if (info.SoFi)
effects.solidFill = [parseEffectObject(info.SoFi, log)];
if (info.solidFillMulti)
effects.solidFill = info.solidFillMulti.map(function (i) { return parseEffectObject(i, log); });
if (info.patternFill)
effects.patternOverlay = parseEffectObject(info.patternFill, log);
if (info.GrFl)
effects.gradientOverlay = [parseEffectObject(info.GrFl, log)];
if (info.gradientFillMulti)
effects.gradientOverlay = info.gradientFillMulti.map(function (i) { return parseEffectObject(i, log); });
if (info.ChFX)
effects.satin = parseEffectObject(info.ChFX, log);
if (info.FrFX)
effects.stroke = [parseFxObject(info.FrFX)];
if (info.frameFXMulti)
effects.stroke = info.frameFXMulti.map(function (i) { return parseFxObject(i); });
return effects;
}
exports.parseEffects = parseEffects;
function parseKeyList(keyList, logMissingFeatures) {
var keys = [];
for (var j = 0; j < keyList.length; j++) {
var key = keyList[j];
var time = key.time, selected = key.selected, animKey = key.animKey;
var interpolation = exports.animInterpStyleEnum.decode(key.animInterpStyle);
switch (animKey.Type) {
case 'keyType.Opct':
keys.push({ interpolation: interpolation, time: time, selected: selected, type: 'opacity', value: parsePercent(animKey.Opct) });
break;
case 'keyType.Pstn':
keys.push({ interpolation: interpolation, time: time, selected: selected, type: 'position', x: animKey.Hrzn, y: animKey.Vrtc });
break;
case 'keyType.Trnf':
keys.push({
interpolation: interpolation,
time: time,
selected: selected,
type: 'transform',
scale: horzVrtcToXY(animKey['Scl ']), skew: horzVrtcToXY(animKey.Skew), rotation: animKey.rotation, translation: horzVrtcToXY(animKey.translation)
});
break;
case 'keyType.sheetStyle': {
var key_1 = { interpolation: interpolation, time: time, selected: selected, type: 'style' };
if (animKey.sheetStyle.Lefx)
key_1.style = parseEffects(animKey.sheetStyle.Lefx, logMissingFeatures);
keys.push(key_1);
break;
}
case 'keyType.globalLighting': {
keys.push({
interpolation: interpolation,
time: time,
selected: selected,
type: 'globalLighting',
globalAngle: animKey.gblA, globalAltitude: animKey.globalAltitude
});
break;
}
default: throw new Error("Unsupported keyType value");
}
}
return keys;
}
function serializeKeyList(keys) {
var keyList = [];
for (var j = 0; j < keys.length; j++) {
var key = keys[j];
var time = key.time, _a = key.selected, selected = _a === void 0 ? false : _a, interpolation = key.interpolation;
var animInterpStyle = exports.animInterpStyleEnum.encode(interpolation);
var animKey = void 0;
switch (key.type) {
case 'opacity':
animKey = { Type: 'keyType.Opct', Opct: unitsPercent(key.value) };
break;
case 'position':
animKey = { Type: 'keyType.Pstn', Hrzn: key.x, Vrtc: key.y };
break;
case 'transform':
animKey = { Type: 'keyType.Trnf', 'Scl ': xyToHorzVrtc(key.scale), Skew: xyToHorzVrtc(key.skew), rotation: key.rotation, translation: xyToHorzVrtc(key.translation) };
break;
case 'style':
animKey = { Type: 'keyType.sheetStyle', sheetStyle: { Vrsn: 1, blendOptions: {} } };
if (key.style)
animKey.sheetStyle = { Vrsn: 1, Lefx: serializeEffects(key.style, false, false), blendOptions: {} };
break;
case 'globalLighting': {
animKey = { Type: 'keyType.globalLighting', gblA: key.globalAngle, globalAltitude: key.globalAltitude };
break;
}
default: throw new Error("Unsupported keyType value");
}
keyList.push({ Vrsn: 1, animInterpStyle: animInterpStyle, time: time, animKey: animKey, selected: selected });
}
return keyList;
}
function parseTrackList(trackList, logMissingFeatures) {
var tracks = [];
for (var i = 0; i < trackList.length; i++) {
var tr = trackList[i];
var track = {
type: exports.stdTrackID.decode(tr.trackID),
enabled: tr.enab,
keys: parseKeyList(tr.keyList, logMissingFeatures),
};
if (tr.effectParams) {
track.effectParams = {
fillCanvas: tr.effectParams.fillCanvas,
zoomOrigin: tr.effectParams.zoomOrigin,
keys: parseKeyList(tr.effectParams.keyList, logMissingFeatures),
};
}
tracks.push(track);
}
return tracks;
}
exports.parseTrackList = parseTrackList;
function serializeTrackList(tracks) {
var trackList = [];
for (var i = 0; i < tracks.length; i++) {
var t = tracks[i];
trackList.push(__assign(__assign({ trackID: exports.stdTrackID.encode(t.type), Vrsn: 1, enab: !!t.enabled, Effc: !!t.effectParams }, (t.effectParams ? {
effectParams: {
keyList: serializeKeyList(t.keys),
fillCanvas: t.effectParams.fillCanvas,
zoomOrigin: t.effectParams.zoomOrigin,
}
} : {})), { keyList: serializeKeyList(t.keys) }));
}
return trackList;
}
exports.serializeTrackList = serializeTrackList;
function parseEffectObject(obj, reportErrors) {
var result = {};
for (var _i = 0, _a = Object.keys(obj); _i < _a.length; _i++) {
var key = _a[_i];
var val = obj[key];
switch (key) {
case 'enab':
result.enabled = !!val;
break;
case 'uglg':
result.useGlobalLight = !!val;
break;
case 'AntA':
result.antialiased = !!val;
break;
case 'Algn':
result.align = !!val;
break;
case 'Dthr':
result.dither = !!val;
break;
case 'Invr':
result.invert = !!val;
break;
case 'Rvrs':
result.reverse = !!val;
break;
case 'Clr ':
result.color = parseColor(val);
break;
case 'hglC':
result.highlightColor = parseColor(val);
break;
case 'sdwC':
result.shadowColor = parseColor(val);
break;
case 'Styl':
result.position = exports.FStl.decode(val);
break;
case 'Md ':
result.blendMode = exports.BlnM.decode(val);
break;
case 'hglM':
result.highlightBlendMode = exports.BlnM.decode(val);
break;
case 'sdwM':
result.shadowBlendMode = exports.BlnM.decode(val);
break;
case 'bvlS':
result.style = exports.BESl.decode(val);
break;
case 'bvlD':
result.direction = exports.BESs.decode(val);
break;
case 'bvlT':
result.technique = exports.bvlT.decode(val);
break;
case 'GlwT':
result.technique = exports.BETE.decode(val);
break;
case 'glwS':
result.source = exports.IGSr.decode(val);
break;
case 'Type':
result.type = exports.GrdT.decode(val);
break;
case 'gs99':
result.interpolationMethod = exports.gradientInterpolationMethodType.decode(val);
break;
case 'Opct':
result.opacity = parsePercent(val);
break;
case 'hglO':
result.highlightOpacity = parsePercent(val);
break;
case 'sdwO':
result.shadowOpacity = parsePercent(val);
break;
case 'lagl':
result.angle = parseAngle(val);
break;
case 'Angl':
result.angle = parseAngle(val);
break;
case 'Lald':
result.altitude = parseAngle(val);
break;
case 'Sftn':
result.soften = parseUnits(val);
break;
case 'srgR':
result.strength = parsePercent(val);
break;
case 'blur':
result.size = parseUnits(val);
break;
case 'Nose':
result.noise = parsePercent(val);
break;
case 'Inpr':
result.range = parsePercent(val);
break;
case 'Ckmt':
result.choke = parseUnits(val);
break;
case 'ShdN':
result.jitter = parsePercent(val);
break;
case 'Dstn':
result.distance = parseUnits(val);
break;
case 'Scl ':
result.scale = parsePercent(val);
break;
case 'Ptrn':
result.pattern = { name: val['Nm '], id: val.Idnt };
break;
case 'phase':
result.phase = { x: val.Hrzn, y: val.Vrtc };
break;
case 'Ofst':
result.offset = { x: parsePercent(val.Hrzn), y: parsePercent(val.Vrtc) };
break;
case 'MpgS':
case 'TrnS':
result.contour = {
name: val['Nm '],
curve: val['Crv '].map(function (p) { return ({ x: p.Hrzn, y: p.Vrtc }); }),
};
break;
case 'Grad':
result.gradient = parseGradient(val);
break;
case 'useTexture':
case 'useShape':
case 'layerConceals':
case 'present':
case 'showInDialog':
case 'antialiasGloss':
result[key] = val;
break;
default:
reportErrors && console.log("Invalid effect key: '".concat(key, "', value:"), val);
}
}
return result;
}
function serializeEffectObject(obj, objName, reportErrors) {
var result = {};
for (var _i = 0, _a = Object.keys(obj); _i < _a.length; _i++) {
var objKey = _a[_i];
var key = objKey;
var val = obj[key];
switch (key) {
case 'enabled':
result.enab = !!val;
break;
case 'useGlobalLight':
result.uglg = !!val;
break;
case 'antialiased':
result.AntA = !!val;
break;
case 'align':
result.Algn = !!val;
break;
case 'dither':
result.Dthr = !!val;
break;
case 'invert':
result.Invr = !!val;
break;
case 'reverse':
result.Rvrs = !!val;
break;
case 'color':
result['Clr '] = serializeColor(val);
break;
case 'highlightColor':
result.hglC = serializeColor(val);
break;
case 'shadowColor':
result.sdwC = serializeColor(val);
break;
case 'position':
result.Styl = exports.FStl.encode(val);
break;
case 'blendMode':
result['Md '] = exports.BlnM.encode(val);
break;
case 'highlightBlendMode':
result.hglM = exports.BlnM.encode(val);
break;
case 'shadowBlendMode':
result.sdwM = exports.BlnM.encode(val);
break;
case 'style':
result.bvlS = exports.BESl.encode(val);
break;
case 'direction':
result.bvlD = exports.BESs.encode(val);
break;
case 'technique':
if (objName === 'bevel') {
result.bvlT = exports.bvlT.encode(val);
}
else {
result.GlwT = exports.BETE.encode(val);
}
break;
case 'source':
result.glwS = exports.IGSr.encode(val);
break;
case 'type':
result.Type = exports.GrdT.encode(val);
break;
case 'interpolationMethod':
result.gs99 = exports.gradientInterpolationMethodType.encode(val);
break;
case 'opacity':
result.Opct = unitsPercent(val);
break;
case 'highlightOpacity':
result.hglO = unitsPercent(val);
break;
case 'shadowOpacity':
result.sdwO = unitsPercent(val);
break;
case 'angle':
if (objName === 'gradientOverlay') {
result.Angl = unitsAngle(val);
}
else {
result.lagl = unitsAngle(val);
}
break;
case 'altitude':
result.Lald = unitsAngle(val);
break;
case 'soften':
result.Sftn = unitsValue(val, key);
break;
case 'strength':
result.srgR = unitsPercent(val);
break;
case 'size':
result.blur = unitsValue(val, key);
break;
case 'noise':
result.Nose = unitsPercent(val);
break;
case 'range':
result.Inpr = unitsPercent(val);
break;
case 'choke':
result.Ckmt = unitsValue(val, key);
break;
case 'jitter':
result.ShdN = unitsPercent(val);
break;
case 'distance':
result.Dstn = unitsValue(val, key);
break;
case 'scale':
result['Scl '] = unitsPercent(val);
break;
case 'pattern':
result.Ptrn = { 'Nm ': val.name, Idnt: val.id };
break;
case 'phase':
result.phase = { Hrzn: val.x, Vrtc: val.y };
break;
case 'offset':
result.Ofst = { Hrzn: unitsPercent(val.x), Vrtc: unitsPercent(val.y) };
break;
case 'contour': {
result[objName === 'satin' ? 'MpgS' : 'TrnS'] = {
'Nm ': val.name,
'Crv ': val.curve.map(function (p) { return ({ Hrzn: p.x, Vrtc: p.y }); }),
};
break;
}
case 'gradient':
result.Grad = serializeGradient(val);
break;
case 'useTexture':
case 'useShape':
case 'layerConceals':
case 'present':
case 'showInDialog':
case 'antialiasGloss':
result[key] = val;
break;
default:
reportErrors && console.log("Invalid effect key: '".concat(key, "', value:"), val);
}
}
return result;
}
function parseGradient(grad) {
if (grad.GrdF === 'GrdF.CstS') {
var samples_1 = grad.Intr || 4096;
return {
type: 'solid',
name: grad['Nm '],
smoothness: grad.Intr / 4096,
colorStops: grad.Clrs.map(function (s) { return ({
color: parseColor(s['Clr ']),
location: s.Lctn / samples_1,
midpoint: s.Mdpn / 100,
}); }),
opacityStops: grad.Trns.map(function (s) { return ({
opacity: parsePercent(s.Opct),
location: s.Lctn / samples_1,
midpoint: s.Mdpn / 100,
}); }),
};
}
else {
return {
type: 'noise',
name: grad['Nm '],
roughness: grad.Smth / 4096,
colorModel: exports.ClrS.decode(grad.ClrS),
randomSeed: grad.RndS,
restrictColors: !!grad.VctC,
addTransparency: !!grad.ShTr,
min: grad['Mnm '].map(function (x) { return x / 100; }),
max: grad['Mxm '].map(function (x) { return x / 100; }),
};
}
}
function serializeGradient(grad) {
var _a, _b;
if (grad.type === 'solid') {
var samples_2 = Math.round(((_a = grad.smoothness) !== null && _a !== void 0 ? _a : 1) * 4096);
return {
'Nm ': grad.name || '',
GrdF: 'GrdF.CstS',
Intr: samples_2,
Clrs: grad.colorStops.map(function (s) {
var _a;
return ({
'Clr ': serializeColor(s.color),
Type: 'Clry.UsrS',
Lctn: Math.round(s.location * samples_2),
Mdpn: Math.round(((_a = s.midpoint) !== null && _a !== void 0 ? _a : 0.5) * 100),
});
}),
Trns: grad.opacityStops.map(function (s) {
var _a;
return ({
Opct: unitsPercent(s.opacity),
Lctn: Math.round(s.location * samples_2),
Mdpn: Math.round(((_a = s.midpoint) !== null && _a !== void 0 ? _a : 0.5) * 100),
});
}),
};
}
else {
return {
GrdF: 'GrdF.ClNs',
'Nm ': grad.name || '',
ShTr: !!grad.addTransparency,
VctC: !!grad.restrictColors,
ClrS: exports.ClrS.encode(grad.colorModel),
RndS: grad.randomSeed || 0,
Smth: Math.round(((_b = grad.roughness) !== null && _b !== void 0 ? _b : 1) * 4096),
'Mnm ': (grad.min || [0, 0, 0, 0]).map(function (x) { return x * 100; }),
'Mxm ': (grad.max || [1, 1, 1, 1]).map(function (x) { return x * 100; }),
};
}
}
function parseGradientContent(descriptor) {
var result = parseGradient(descriptor.Grad);
result.style = exports.GrdT.decode(descriptor.Type);
if (descriptor.Dthr !== undefined)
result.dither = descriptor.Dthr;
if (descriptor.Rvrs !== undefined)
result.reverse = descriptor.Rvrs;
if (descriptor.Angl !== undefined)
result.angle = parseAngle(descriptor.Angl);
if (descriptor['Scl '] !== undefined)
result.scale = parsePercent(descriptor['Scl ']);
if (descriptor.Algn !== undefined)
result.align = descriptor.Algn;
if (descriptor.Ofst !== undefined) {
result.offset = {
x: parsePercent(descriptor.Ofst.Hrzn),
y: parsePercent(descriptor.Ofst.Vrtc)
};
}
return result;
}
function parsePatternContent(descriptor) {
var result = {
name: descriptor.Ptrn['Nm '],
id: descriptor.Ptrn.Idnt,
};
if (descriptor.Lnkd !== undefined)
result.linked = descriptor.Lnkd;
if (descriptor.phase !== undefined)
result.phase = { x: descriptor.phase.Hrzn, y: descriptor.phase.Vrtc };
return result;
}
function parseVectorContent(descriptor) {
if ('Grad' in descriptor) {
return parseGradientContent(descriptor);
}
else if ('Ptrn' in descriptor) {
return __assign({ type: 'pattern' }, parsePatternContent(descriptor));
}
else if ('Clr ' in descriptor) {
return { type: 'color', color: parseColor(descriptor['Clr ']) };
}
else {
throw new Error('Invalid vector content');
}
}
exports.parseVectorContent = parseVectorContent;
function serializeGradientContent(content) {
var result = {};
if (content.dither !== undefined)
result.Dthr = content.dither;
if (content.reverse !== undefined)
result.Rvrs = content.reverse;
if (content.angle !== undefined)
result.Angl = unitsAngle(content.angle);
result.Type = exports.GrdT.encode(content.style);
if (content.align !== undefined)
result.Algn = content.align;
if (content.scale !== undefined)
result['Scl '] = unitsPercent(content.scale);
if (content.offset) {
result.Ofst = {
Hrzn: unitsPercent(content.offset.x),
Vrtc: unitsPercent(content.offset.y),
};
}
result.Grad = serializeGradient(content);
return result;
}
function serializePatternContent(content) {
var result = {
Ptrn: {
'Nm ': content.name || '',
Idnt: content.id || '',
}
};
if (content.linked !== undefined)
result.Lnkd = !!content.linked;
if (content.phase !== undefined)
result.phase = { Hrzn: content.phase.x, Vrtc: content.phase.y };
return result;
}
function serializeVectorContent(content) {
if (content.type === 'color') {
return { key: 'SoCo', descriptor: { 'Clr ': serializeColor(content.color) } };
}
else if (content.type === 'pattern') {
return { key: 'PtFl', descriptor: serializePatternContent(content) };
}
else {
return { key: 'GdFl', descriptor: serializeGradientContent(content) };
}
}
exports.serializeVectorContent = serializeVectorContent;
function parseColor(color) {
if ('H ' in color) {
return { h: parsePercentOrAngle(color['H ']), s: color.Strt, b: color.Brgh };
}
else if ('Rd ' in color) {
return { r: color['Rd '], g: color['Grn '], b: color['Bl '] };
}
else if ('Cyn ' in color) {
return { c: color['Cyn '], m: color.Mgnt, y: color['Ylw '], k: color.Blck };
}
else if ('Gry ' in color) {
return { k: color['Gry '] };
}
else if ('Lmnc' in color) {
return { l: color.Lmnc, a: color['A '], b: color['B '] };
}
else {
throw new Error('Unsupported color descriptor');
}
}
exports.parseColor = parseColor;
function serializeColor(color) {
if (!color) {
return { 'Rd ': 0, 'Grn ': 0, 'Bl ': 0 };
}
else if ('r' in color) {
return { 'Rd ': color.r || 0, 'Grn ': color.g || 0, 'Bl ': color.b || 0 };
}
else if ('h' in color) {
return { 'H ': unitsAngle(color.h * 360), Strt: color.s || 0, Brgh: color.b || 0 };
}
else if ('c' in color) {
return { 'Cyn ': color.c || 0, Mgnt: color.m || 0, 'Ylw ': color.y || 0, Blck: color.k || 0 };
}
else if ('l' in color) {
return { Lmnc: color.l || 0, 'A ': color.a || 0, 'B ': color.b || 0 };
}
else if ('k' in color) {
return { 'Gry ': color.k };
}
else {
throw new Error('Invalid color value');
}
}
exports.serializeColor = serializeColor;
function parseAngle(x) {
if (x === undefined)
return 0;
if (x.units !== 'Angle')
throw new Error("Invalid units: ".concat(x.units));
return x.value;
}
exports.parseAngle = parseAngle;
function parsePercent(x) {
if (x === undefined)
return 1;
if (x.units !== 'Percent')
throw new Error("Invalid units: ".concat(x.units));
return x.value / 100;
}
exports.parsePercent = parsePercent;
function parsePercentOrAngle(x) {
if (x === undefined)
return 1;
if (x.units === 'Percent')
return x.value / 100;
if (x.units === 'Angle')
return x.value / 360;
throw new Error("Invalid units: ".concat(x.units));
}
exports.parsePercentOrAngle = parsePercentOrAngle;
function parseUnits(_a) {
var units = _a.units, value = _a.value;
if (units !== 'Pixels' && units !== 'Millimeters' && units !== 'Points' && units !== 'None' &&
units !== 'Picas' && units !== 'Inches' && units !== 'Centimeters' && units !== 'Density') {
throw new Error("Invalid units: ".concat(JSON.stringify({ units: units, value: value })));
}
return { value: value, units: units };
}
exports.parseUnits = parseUnits;
function parseUnitsOrNumber(value, units) {
if (units === void 0) { units = 'Pixels'; }
if (typeof value === 'number')
return { value: value, units: units };
return parseUnits(value);
}
exports.parseUnitsOrNumber = parseUnitsOrNumber;
function parseUnitsToNumber(_a, expectedUnits) {
var units = _a.units, value = _a.value;
if (units !== expectedUnits)
throw new Error("Invalid units: ".concat(JSON.stringify({ units: units, value: value })));
return value;
}
exports.parseUnitsToNumber = parseUnitsToNumber;
function unitsAngle(value) {
return { units: 'Angle', value: value || 0 };
}
exports.unitsAngle = unitsAngle;
function unitsPercent(value) {
return { units: 'Percent', value: Math.round((value || 0) * 100) };
}
exports.unitsPercent = unitsPercent;
function unitsValue(x, key) {
if (x == null)
return { units: 'Pixels', value: 0 };
if (typeof x !== 'object')
throw new Error("Invalid value: ".concat(JSON.stringify(x), " (key: ").concat(key, ") (should have value and units)"));
var units = x.units, value = x.value;
if (typeof value !== 'number')
throw new Error("Invalid value in ".concat(JSON.stringify(x), " (key: ").concat(key, ")"));
if (units !== 'Pixels' && units !== 'Millimeters' && units !== 'Points' && units !== 'None' &&
units !== 'Picas' && units !== 'Inches' && units !== 'Centimeters' && units !== 'Density') {
throw new Error("Invalid units in ".concat(JSON.stringify(x), " (key: ").concat(key, ")"));
}
return { units: units, value: value };
}
exports.unitsValue = unitsValue;
exports.textGridding = (0, helpers_1.createEnum)('textGridding', 'none', {
none: 'None',
round: 'Rnd ',
});
exports.Ornt = (0, helpers_1.createEnum)('Ornt', 'horizontal', {
horizontal: 'Hrzn',
vertical: 'Vrtc',
});
exports.Annt = (0, helpers_1.createEnum)('Annt', 'sharp', {
none: 'Anno',
sharp: 'antiAliasSharp',
crisp: 'AnCr',
strong: 'AnSt',
smooth: 'AnSm',
platform: 'antiAliasPlatformGray',
platformLCD: 'antiAliasPlatformLCD',
});
exports.warpStyle = (0, helpers_1.createEnum)('warpStyle', 'none', {
none: 'warpNone',
arc: 'warpArc',
arcLower: 'warpArcLower',
arcUpper: 'warpArcUpper',
arch: 'warpArch',
bulge: 'warpBulge',
shellLower: 'warpShellLower',
shellUpper: 'warpShellUpper',
flag: 'warpFlag',
wave: 'warpWave',
fish: 'warpFish',
rise: 'warpRise',
fisheye: 'warpFisheye',
inflate: 'warpInflate',
squeeze: 'warpSqueeze',
twist: 'warpTwist',
custom: 'warpCustom',
});
exports.BlnM = (0, helpers_1.createEnum)('BlnM', 'normal', {
'normal': 'Nrml',
'dissolve': 'Dslv',
'darken': 'Drkn',
'multiply': 'Mltp',
'color burn': 'CBrn',
'linear burn': 'linearBurn',
'darker color': 'darkerColor',
'lighten': 'Lghn',
'screen': 'Scrn',
'color dodge': 'CDdg',
'linear dodge': 'linearDodge',
'lighter color': 'lighterColor',
'overlay': 'Ovrl',
'soft light': 'SftL',
'hard light': 'HrdL',
'vivid light': 'vividLight',
'linear light': 'linearLight',
'pin light': 'pinLight',
'hard mix': 'hardMix',
'difference': 'Dfrn',
'exclusion': 'Xclu',
'subtract': 'blendSubtraction',
'divide': 'blendDivide',
'hue': 'H ',
'saturation': 'Strt',
'color': 'Clr ',
'luminosity': 'Lmns',
// used in ABR
'linear height': 'linearHeight',
'height': 'Hght',
'subtraction': 'Sbtr', // 2nd version of subtract ?
});
exports.BESl = (0, helpers_1.createEnum)('BESl', 'inner bevel', {
'inner bevel': 'InrB',
'outer bevel': 'OtrB',
'emboss': 'Embs',
'pillow emboss': 'PlEb',
'stroke emboss': 'strokeEmboss',
});
exports.bvlT = (0, helpers_1.createEnum)('bvlT', 'smooth', {
'smooth': 'SfBL',
'chisel hard': 'PrBL',
'chisel soft': 'Slmt',
});
exports.BESs = (0, helpers_1.createEnum)('BESs', 'up', {
up: 'In ',
down: 'Out ',
});
exports.BETE = (0, helpers_1.createEnum)('BETE', 'softer', {
softer: 'SfBL',
precise: 'PrBL',
});
exports.IGSr = (0, helpers_1.createEnum)('IGSr', 'edge', {
edge: 'SrcE',
center: 'SrcC',
});
exports.GrdT = (0, helpers_1.createEnum)('GrdT', 'linear', {
linear: 'Lnr ',
radial: 'Rdl ',
angle: 'Angl',
reflected: 'Rflc',
diamond: 'Dmnd',
});
exports.animInterpStyleEnum = (0, helpers_1.createEnum)('animInterpStyle', 'linear', {
linear: 'Lnr ',
hold: 'hold',
});
exports.stdTrackID = (0, helpers_1.createEnum)('stdTrackID', 'opacity', {
opacity: 'opacityTrack',
style: 'styleTrack',
sheetTransform: 'sheetTransformTrack',
sheetPosition: 'sheetPositionTrack',
globalLighting: 'globalLightingTrack',
});
exports.gradientInterpolationMethodType = (0, helpers_1.createEnum)('gradientInterpolationMethodType', 'perceptual', {
perceptual: 'Perc',
linear: 'Lnr',
classic: 'Gcls',
});
exports.ClrS = (0, helpers_1.createEnum)('ClrS', 'rgb', {
rgb: 'RGBC',
hsb: 'HSBl',
lab: 'LbCl',
});
exports.FStl = (0, helpers_1.createEnum)('FStl', 'outside', {
outside: 'OutF',
center: 'CtrF',
inside: 'InsF'
});
exports.FrFl = (0, helpers_1.createEnum)('FrFl', 'color', {
color: 'SClr',
gradient: 'GrFl',
pattern: 'Ptrn',
});
exports.strokeStyleLineCapType = (0, helpers_1.createEnum)('strokeStyleLineCapType', 'butt', {
butt: 'strokeStyleButtCap',
round: 'strokeStyleRoundCap',
square: 'strokeStyleSquareCap',
});
exports.strokeStyleLineJoinType = (0, helpers_1.createEnum)('strokeStyleLineJoinType', 'miter', {
miter: 'strokeStyleMiterJoin',
round: 'strokeStyleRoundJoin',
bevel: 'strokeStyleBevelJoin',
});
exports.strokeStyleLineAlignment = (0, helpers_1.createEnum)('strokeStyleLineAlignment', 'inside', {
inside: 'strokeStyleAlignInside',
center: 'strokeStyleAlignCenter',
outside: 'strokeStyleAlignOutside',
});
},{"./helpers":7,"./psdReader":11,"./psdWriter":12}],5:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.writeEffects = exports.readEffects = void 0;
var helpers_1 = require("./helpers");
var psdReader_1 = require("./psdReader");
var psdWriter_1 = require("./psdWriter");
var bevelStyles = [
undefined, 'outer bevel', 'inner bevel', 'emboss', 'pillow emboss', 'stroke emboss'
];
function readBlendMode(reader) {
(0, psdReader_1.checkSignature)(reader, '8BIM');
return helpers_1.toBlendMode[(0, psdReader_1.readSignature)(reader)] || 'normal';
}
function writeBlendMode(writer, mode) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, helpers_1.fromBlendMode[mode] || 'norm');
}
function readFixedPoint8(reader) {
return (0, psdReader_1.readUint8)(reader) / 0xff;
}
function writeFixedPoint8(writer, value) {
(0, psdWriter_1.writeUint8)(writer, Math.round(value * 0xff) | 0);
}
function readEffects(reader) {
var version = (0, psdReader_1.readUint16)(reader);
if (version !== 0)
throw new Error("Invalid effects layer version: ".concat(version));
var effectsCount = (0, psdReader_1.readUint16)(reader);
var effects = {};
for (var i = 0; i < effectsCount; i++) {
(0, psdReader_1.checkSignature)(reader, '8BIM');
var type = (0, psdReader_1.readSignature)(reader);
switch (type) {
case 'cmnS': { // common state (see See Effects layer, common state info)
var size = (0, psdReader_1.readUint32)(reader);
var version_1 = (0, psdReader_1.readUint32)(reader);
var visible = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.skipBytes)(reader, 2);
if (size !== 7 || version_1 !== 0 || !visible)
throw new Error("Invalid effects common state");
break;
}
case 'dsdw': // drop shadow (see See Effects layer, drop shadow and inner shadow info)
case 'isdw': { // inner shadow (see See Effects layer, drop shadow and inner shadow info)
var blockSize = (0, psdReader_1.readUint32)(reader);
var version_2 = (0, psdReader_1.readUint32)(reader);
if (blockSize !== 41 && blockSize !== 51)
throw new Error("Invalid shadow size: ".concat(blockSize));
if (version_2 !== 0 && version_2 !== 2)
throw new Error("Invalid shadow version: ".concat(version_2));
var size = (0, psdReader_1.readFixedPoint32)(reader);
(0, psdReader_1.readFixedPoint32)(reader); // intensity
var angle = (0, psdReader_1.readFixedPoint32)(reader);
var distance = (0, psdReader_1.readFixedPoint32)(reader);
var color = (0, psdReader_1.readColor)(reader);
var blendMode = readBlendMode(reader);
var enabled = !!(0, psdReader_1.readUint8)(reader);
var useGlobalLight = !!(0, psdReader_1.readUint8)(reader);
var opacity = readFixedPoint8(reader);
if (blockSize >= 51)
(0, psdReader_1.readColor)(reader); // native color
var shadowInfo = {
size: { units: 'Pixels', value: size },
distance: { units: 'Pixels', value: distance },
angle: angle,
color: color,
blendMode: blendMode,
enabled: enabled,
useGlobalLight: useGlobalLight,
opacity: opacity
};
if (type === 'dsdw') {
effects.dropShadow = [shadowInfo];
}
else {
effects.innerShadow = [shadowInfo];
}
break;
}
case 'oglw': { // outer glow (see See Effects layer, outer glow info)
var blockSize = (0, psdReader_1.readUint32)(reader);
var version_3 = (0, psdReader_1.readUint32)(reader);
if (blockSize !== 32 && blockSize !== 42)
throw new Error("Invalid outer glow size: ".concat(blockSize));
if (version_3 !== 0 && version_3 !== 2)
throw new Error("Invalid outer glow version: ".concat(version_3));
var size = (0, psdReader_1.readFixedPoint32)(reader);
(0, psdReader_1.readFixedPoint32)(reader); // intensity
var color = (0, psdReader_1.readColor)(reader);
var blendMode = readBlendMode(reader);
var enabled = !!(0, psdReader_1.readUint8)(reader);
var opacity = readFixedPoint8(reader);
if (blockSize >= 42)
(0, psdReader_1.readColor)(reader); // native color
effects.outerGlow = {
size: { units: 'Pixels', value: size },
color: color,
blendMode: blendMode,
enabled: enabled,
opacity: opacity
};
break;
}
case 'iglw': { // inner glow (see See Effects layer, inner glow info)
var blockSize = (0, psdReader_1.readUint32)(reader);
var version_4 = (0, psdReader_1.readUint32)(reader);
if (blockSize !== 32 && blockSize !== 43)
throw new Error("Invalid inner glow size: ".concat(blockSize));
if (version_4 !== 0 && version_4 !== 2)
throw new Error("Invalid inner glow version: ".concat(version_4));
var size = (0, psdReader_1.readFixedPoint32)(reader);
(0, psdReader_1.readFixedPoint32)(reader); // intensity
var color = (0, psdReader_1.readColor)(reader);
var blendMode = readBlendMode(reader);
var enabled = !!(0, psdReader_1.readUint8)(reader);
var opacity = readFixedPoint8(reader);
if (blockSize >= 43) {
(0, psdReader_1.readUint8)(reader); // inverted
(0, psdReader_1.readColor)(reader); // native color
}
effects.innerGlow = {
size: { units: 'Pixels', value: size },
color: color,
blendMode: blendMode,
enabled: enabled,
opacity: opacity
};
break;
}
case 'bevl': { // bevel (see See Effects layer, bevel info)
var blockSize = (0, psdReader_1.readUint32)(reader);
var version_5 = (0, psdReader_1.readUint32)(reader);
if (blockSize !== 58 && blockSize !== 78)
throw new Error("Invalid bevel size: ".concat(blockSize));
if (version_5 !== 0 && version_5 !== 2)
throw new Error("Invalid bevel version: ".concat(version_5));
var angle = (0, psdReader_1.readFixedPoint32)(reader);
var strength = (0, psdReader_1.readFixedPoint32)(reader);
var size = (0, psdReader_1.readFixedPoint32)(reader);
var highlightBlendMode = readBlendMode(reader);
var shadowBlendMode = readBlendMode(reader);
var highlightColor = (0, psdReader_1.readColor)(reader);
var shadowColor = (0, psdReader_1.readColor)(reader);
var style = bevelStyles[(0, psdReader_1.readUint8)(reader)] || 'inner bevel';
var highlightOpacity = readFixedPoint8(reader);
var shadowOpacity = readFixedPoint8(reader);
var enabled = !!(0, psdReader_1.readUint8)(reader);
var useGlobalLight = !!(0, psdReader_1.readUint8)(reader);
var direction = (0, psdReader_1.readUint8)(reader) ? 'down' : 'up';
if (blockSize >= 78) {
(0, psdReader_1.readColor)(reader); // real highlight color
(0, psdReader_1.readColor)(reader); // real shadow color
}
effects.bevel = {
size: { units: 'Pixels', value: size },
angle: angle,
strength: strength,
highlightBlendMode: highlightBlendMode,
shadowBlendMode: shadowBlendMode,
highlightColor: highlightColor,
shadowColor: shadowColor,
style: style,
highlightOpacity: highlightOpacity,
shadowOpacity: shadowOpacity,
enabled: enabled,
useGlobalLight: useGlobalLight,
direction: direction,
};
break;
}
case 'sofi': { // solid fill (Photoshop 7.0) (see See Effects layer, solid fill (added in Photoshop 7.0))
var size = (0, psdReader_1.readUint32)(reader);
var version_6 = (0, psdReader_1.readUint32)(reader);
if (size !== 34)
throw new Error("Invalid effects solid fill info size: ".concat(size));
if (version_6 !== 2)
throw new Error("Invalid effects solid fill info version: ".concat(version_6));
var blendMode = readBlendMode(reader);
var color = (0, psdReader_1.readColor)(reader);
var opacity = readFixedPoint8(reader);
var enabled = !!(0, psdReader_1.readUint8)(reader);
(0, psdReader_1.readColor)(reader); // native color
effects.solidFill = [{ blendMode: blendMode, color: color, opacity: opacity, enabled: enabled }];
break;
}
default:
throw new Error("Invalid effect type: '".concat(type, "'"));
}
}
return effects;
}
exports.readEffects = readEffects;
function writeShadowInfo(writer, shadow) {
var _a;
(0, psdWriter_1.writeUint32)(writer, 51);
(0, psdWriter_1.writeUint32)(writer, 2);
(0, psdWriter_1.writeFixedPoint32)(writer, shadow.size && shadow.size.value || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, 0); // intensity
(0, psdWriter_1.writeFixedPoint32)(writer, shadow.angle || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, shadow.distance && shadow.distance.value || 0);
(0, psdWriter_1.writeColor)(writer, shadow.color);
writeBlendMode(writer, shadow.blendMode);
(0, psdWriter_1.writeUint8)(writer, shadow.enabled ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, shadow.useGlobalLight ? 1 : 0);
writeFixedPoint8(writer, (_a = shadow.opacity) !== null && _a !== void 0 ? _a : 1);
(0, psdWriter_1.writeColor)(writer, shadow.color); // native color
}
function writeEffects(writer, effects) {
var _a, _b, _c, _d, _e, _f;
var dropShadow = (_a = effects.dropShadow) === null || _a === void 0 ? void 0 : _a[0];
var innerShadow = (_b = effects.innerShadow) === null || _b === void 0 ? void 0 : _b[0];
var outerGlow = effects.outerGlow;
var innerGlow = effects.innerGlow;
var bevel = effects.bevel;
var solidFill = (_c = effects.solidFill) === null || _c === void 0 ? void 0 : _c[0];
var count = 1;
if (dropShadow)
count++;
if (innerShadow)
count++;
if (outerGlow)
count++;
if (innerGlow)
count++;
if (bevel)
count++;
if (solidFill)
count++;
(0, psdWriter_1.writeUint16)(writer, 0);
(0, psdWriter_1.writeUint16)(writer, count);
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'cmnS');
(0, psdWriter_1.writeUint32)(writer, 7); // size
(0, psdWriter_1.writeUint32)(writer, 0); // version
(0, psdWriter_1.writeUint8)(writer, 1); // visible
(0, psdWriter_1.writeZeros)(writer, 2);
if (dropShadow) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'dsdw');
writeShadowInfo(writer, dropShadow);
}
if (innerShadow) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'isdw');
writeShadowInfo(writer, innerShadow);
}
if (outerGlow) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'oglw');
(0, psdWriter_1.writeUint32)(writer, 42);
(0, psdWriter_1.writeUint32)(writer, 2);
(0, psdWriter_1.writeFixedPoint32)(writer, ((_d = outerGlow.size) === null || _d === void 0 ? void 0 : _d.value) || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, 0); // intensity
(0, psdWriter_1.writeColor)(writer, outerGlow.color);
writeBlendMode(writer, outerGlow.blendMode);
(0, psdWriter_1.writeUint8)(writer, outerGlow.enabled ? 1 : 0);
writeFixedPoint8(writer, outerGlow.opacity || 0);
(0, psdWriter_1.writeColor)(writer, outerGlow.color);
}
if (innerGlow) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'iglw');
(0, psdWriter_1.writeUint32)(writer, 43);
(0, psdWriter_1.writeUint32)(writer, 2);
(0, psdWriter_1.writeFixedPoint32)(writer, ((_e = innerGlow.size) === null || _e === void 0 ? void 0 : _e.value) || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, 0); // intensity
(0, psdWriter_1.writeColor)(writer, innerGlow.color);
writeBlendMode(writer, innerGlow.blendMode);
(0, psdWriter_1.writeUint8)(writer, innerGlow.enabled ? 1 : 0);
writeFixedPoint8(writer, innerGlow.opacity || 0);
(0, psdWriter_1.writeUint8)(writer, 0); // inverted
(0, psdWriter_1.writeColor)(writer, innerGlow.color);
}
if (bevel) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'bevl');
(0, psdWriter_1.writeUint32)(writer, 78);
(0, psdWriter_1.writeUint32)(writer, 2);
(0, psdWriter_1.writeFixedPoint32)(writer, bevel.angle || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, bevel.strength || 0);
(0, psdWriter_1.writeFixedPoint32)(writer, ((_f = bevel.size) === null || _f === void 0 ? void 0 : _f.value) || 0);
writeBlendMode(writer, bevel.highlightBlendMode);
writeBlendMode(writer, bevel.shadowBlendMode);
(0, psdWriter_1.writeColor)(writer, bevel.highlightColor);
(0, psdWriter_1.writeColor)(writer, bevel.shadowColor);
var style = bevelStyles.indexOf(bevel.style);
(0, psdWriter_1.writeUint8)(writer, style <= 0 ? 1 : style);
writeFixedPoint8(writer, bevel.highlightOpacity || 0);
writeFixedPoint8(writer, bevel.shadowOpacity || 0);
(0, psdWriter_1.writeUint8)(writer, bevel.enabled ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, bevel.useGlobalLight ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, bevel.direction === 'down' ? 1 : 0);
(0, psdWriter_1.writeColor)(writer, bevel.highlightColor);
(0, psdWriter_1.writeColor)(writer, bevel.shadowColor);
}
if (solidFill) {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'sofi');
(0, psdWriter_1.writeUint32)(writer, 34);
(0, psdWriter_1.writeUint32)(writer, 2);
writeBlendMode(writer, solidFill.blendMode);
(0, psdWriter_1.writeColor)(writer, solidFill.color);
writeFixedPoint8(writer, solidFill.opacity || 0);
(0, psdWriter_1.writeUint8)(writer, solidFill.enabled ? 1 : 0);
(0, psdWriter_1.writeColor)(writer, solidFill.color);
}
}
exports.writeEffects = writeEffects;
},{"./helpers":7,"./psdReader":11,"./psdWriter":12}],6:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.serializeEngineData = exports.parseEngineData = void 0;
function isWhitespace(char) {
// ' ', '\n', '\r', '\t'
return char === 32 || char === 10 || char === 13 || char === 9;
}
function isNumber(char) {
// 0123456789.-
return (char >= 48 && char <= 57) || char === 46 || char === 45;
}
function parseEngineData(data) {
var index = 0;
function skipWhitespace() {
while (index < data.length && isWhitespace(data[index])) {
index++;
}
}
function getTextByte() {
var byte = data[index];
index++;
if (byte === 92) { // \
byte = data[index];
index++;
}
return byte;
}
function getText() {
var result = '';
if (data[index] === 41) { // )
index++;
return result;
}
// Strings start with utf-16 BOM
if (data[index] !== 0xFE || data[index + 1] !== 0xFF) {
throw new Error('Invalid utf-16 BOM');
}
index += 2;
// ), ( and \ characters are escaped in ascii manner, remove the escapes before interpreting
// the bytes as utf-16
while (index < data.length && data[index] !== 41) { // )
var high = getTextByte();
var low = getTextByte();
var char = (high << 8) | low;
result += String.fromCharCode(char);
}
index++;
return result;
}
var root = null;
var stack = [];
function pushContainer(value) {
if (!stack.length) {
stack.push(value);
root = value;
}
else {
pushValue(value);
stack.push(value);
}
}
function pushValue(value) {
if (!stack.length)
throw new Error('Invalid data');
var top = stack[stack.length - 1];
if (typeof top === 'string') {
stack[stack.length - 2][top] = value;
pop();
}
else if (Array.isArray(top)) {
top.push(value);
}
else {
throw new Error('Invalid data');
}
}
function pushProperty(name) {
if (!stack.length)
pushContainer({});
var top = stack[stack.length - 1];
if (top && typeof top === 'string') {
if (name === 'nil') {
pushValue(null);
}
else {
pushValue("/".concat(name));
}
}
else if (top && typeof top === 'object') {
stack.push(name);
}
else {
throw new Error('Invalid data');
}
}
function pop() {
if (!stack.length)
throw new Error('Invalid data');
stack.pop();
}
skipWhitespace();
while (index < data.length) {
var i = index;
var char = data[i];
if (char === 60 && data[i + 1] === 60) { // <<
index += 2;
pushContainer({});
}
else if (char === 62 && data[i + 1] === 62) { // >>
index += 2;
pop();
}
else if (char === 47) { // /
index += 1;
var start = index;
while (index < data.length && !isWhitespace(data[index])) {
index++;
}
var name_1 = '';
for (var i_1 = start; i_1 < index; i_1++) {
name_1 += String.fromCharCode(data[i_1]);
}
pushProperty(name_1);
}
else if (char === 40) { // (
index += 1;
pushValue(getText());
}
else if (char === 91) { // [
index += 1;
pushContainer([]);
}
else if (char === 93) { // ]
index += 1;
pop();
}
else if (char === 110 && data[i + 1] === 117 && data[i + 2] === 108 && data[i + 3] === 108) { // null
index += 4;
pushValue(null);
}
else if (char === 116 && data[i + 1] === 114 && data[i + 2] === 117 && data[i + 3] === 101) { // true
index += 4;
pushValue(true);
}
else if (char === 102 && data[i + 1] === 97 && data[i + 2] === 108 && data[i + 3] === 115 && data[i + 4] === 101) { // false
index += 5;
pushValue(false);
}
else if (isNumber(char)) {
var value = '';
while (index < data.length && isNumber(data[index])) {
value += String.fromCharCode(data[index]);
index++;
}
pushValue(parseFloat(value));
}
else {
index += 1;
console.log("Invalid token ".concat(String.fromCharCode(char), " at ").concat(index));
// ` near ${String.fromCharCode.apply(null, data.slice(index - 10, index + 20) as any)}` +
// `data [${Array.from(data.slice(index - 10, index + 20)).join(', ')}]`
}
skipWhitespace();
}
return root;
}
exports.parseEngineData = parseEngineData;
var floatKeys = [
'Axis', 'XY', 'Zone', 'WordSpacing', 'FirstLineIndent', 'GlyphSpacing', 'StartIndent', 'EndIndent', 'SpaceBefore',
'SpaceAfter', 'LetterSpacing', 'Values', 'GridSize', 'GridLeading', 'PointBase', 'BoxBounds', 'TransformPoint0', 'TransformPoint1',
'TransformPoint2', 'FontSize', 'Leading', 'HorizontalScale', 'VerticalScale', 'BaselineShift', 'Tsume',
'OutlineWidth', 'AutoLeading',
];
var intArrays = ['RunLengthArray'];
// TODO: handle /nil
function serializeEngineData(data, condensed) {
if (condensed === void 0) { condensed = false; }
var buffer = new Uint8Array(1024);
var offset = 0;
var indent = 0;
function write(value) {
if (offset >= buffer.length) {
var newBuffer = new Uint8Array(buffer.length * 2);
newBuffer.set(buffer);
buffer = newBuffer;
}
buffer[offset] = value;
offset++;
}
function writeString(value) {
for (var i = 0; i < value.length; i++) {
write(value.charCodeAt(i));
}
}
function writeIndent() {
if (condensed) {
writeString(' ');
}
else {
for (var i = 0; i < indent; i++) {
writeString('\t');
}
}
}
function writeProperty(key, value) {
writeIndent();
writeString("/".concat(key));
writeValue(value, key, true);
if (!condensed)
writeString('\n');
}
function serializeInt(value) {
return value.toString();
}
function serializeFloat(value) {
return value.toFixed(5)
.replace(/(\d)0+$/g, '$1')
.replace(/^0+\.([1-9])/g, '.$1')
.replace(/^-0+\.0(\d)/g, '-.0$1');
}
function serializeNumber(value, key) {
var isFloat = (key && floatKeys.indexOf(key) !== -1) || (value | 0) !== value;
return isFloat ? serializeFloat(value) : serializeInt(value);
}
function getKeys(value) {
var keys = Object.keys(value);
if (keys.indexOf('98') !== -1)
keys.unshift.apply(keys, keys.splice(keys.indexOf('99'), 1));
if (keys.indexOf('99') !== -1)
keys.unshift.apply(keys, keys.splice(keys.indexOf('99'), 1));
return keys;
}
function writeStringByte(value) {
if (value === 40 || value === 41 || value === 92) { // ( ) \
write(92); // \
}
write(value);
}
function writeValue(value, key, inProperty) {
if (inProperty === void 0) { inProperty = false; }
function writePrefix() {
if (inProperty) {
writeString(' ');
}
else {
writeIndent();
}
}
if (value === null) {
writePrefix();
writeString(condensed ? '/nil' : 'null');
}
else if (typeof value === 'number') {
writePrefix();
writeString(serializeNumber(value, key));
}
else if (typeof value === 'boolean') {
writePrefix();
writeString(value ? 'true' : 'false');
}
else if (typeof value === 'string') {
writePrefix();
if ((key === '99' || key === '98') && value.charAt(0) === '/') {
writeString(value);
}
else {
writeString('(');
write(0xfe);
write(0xff);
for (var i = 0; i < value.length; i++) {
var code = value.charCodeAt(i);
writeStringByte((code >> 8) & 0xff);
writeStringByte(code & 0xff);
}
writeString(')');
}
}
else if (Array.isArray(value)) {
writePrefix();
if (value.every(function (x) { return typeof x === 'number'; })) {
writeString('[');
var intArray = intArrays.indexOf(key) !== -1;
for (var _i = 0, value_1 = value; _i < value_1.length; _i++) {
var x = value_1[_i];
writeString(' ');
writeString(intArray ? serializeNumber(x) : serializeFloat(x));
}
writeString(' ]');
}
else {
writeString('[');
if (!condensed)
writeString('\n');
for (var _a = 0, value_2 = value; _a < value_2.length; _a++) {
var x = value_2[_a];
writeValue(x, key);
if (!condensed)
writeString('\n');
}
writeIndent();
writeString(']');
}
}
else if (typeof value === 'object') {
if (inProperty && !condensed)
writeString('\n');
writeIndent();
writeString('<<');
if (!condensed)
writeString('\n');
indent++;
for (var _b = 0, _c = getKeys(value); _b < _c.length; _b++) {
var key_1 = _c[_b];
writeProperty(key_1, value[key_1]);
}
indent--;
writeIndent();
writeString('>>');
}
return undefined;
}
if (condensed) {
if (typeof data === 'object') {
for (var _i = 0, _a = getKeys(data); _i < _a.length; _i++) {
var key = _a[_i];
writeProperty(key, data[key]);
}
}
}
else {
writeString('\n\n');
writeValue(data);
}
return buffer.slice(0, offset);
}
exports.serializeEngineData = serializeEngineData;
},{}],7:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.initializeCanvas = exports.createImageData = exports.createCanvasFromData = exports.createCanvas = exports.writeDataZipWithoutPrediction = exports.writeDataRLE = exports.writeDataRaw = exports.decodeBitmap = exports.resetImageData = exports.hasAlpha = exports.clamp = exports.offsetForChannel = exports.Compression = exports.ChannelID = exports.MaskParams = exports.LayerMaskFlags = exports.ColorSpace = exports.createEnum = exports.revMap = exports.largeAdditionalInfoKeys = exports.layerColors = exports.toBlendMode = exports.fromBlendMode = exports.RAW_IMAGE_DATA = exports.MOCK_HANDLERS = void 0;
var base64_js_1 = require("base64-js");
var pako_1 = require("pako");
exports.MOCK_HANDLERS = false;
exports.RAW_IMAGE_DATA = false;
exports.fromBlendMode = {};
exports.toBlendMode = {
'pass': 'pass through',
'norm': 'normal',
'diss': 'dissolve',
'dark': 'darken',
'mul ': 'multiply',
'idiv': 'color burn',
'lbrn': 'linear burn',
'dkCl': 'darker color',
'lite': 'lighten',
'scrn': 'screen',
'div ': 'color dodge',
'lddg': 'linear dodge',
'lgCl': 'lighter color',
'over': 'overlay',
'sLit': 'soft light',
'hLit': 'hard light',
'vLit': 'vivid light',
'lLit': 'linear light',
'pLit': 'pin light',
'hMix': 'hard mix',
'diff': 'difference',
'smud': 'exclusion',
'fsub': 'subtract',
'fdiv': 'divide',
'hue ': 'hue',
'sat ': 'saturation',
'colr': 'color',
'lum ': 'luminosity',
};
Object.keys(exports.toBlendMode).forEach(function (key) { return exports.fromBlendMode[exports.toBlendMode[key]] = key; });
exports.layerColors = [
'none', 'red', 'orange', 'yellow', 'green', 'blue', 'violet', 'gray'
];
exports.largeAdditionalInfoKeys = [
// from documentation
'LMsk', 'Lr16', 'Lr32', 'Layr', 'Mt16', 'Mt32', 'Mtrn', 'Alph', 'FMsk', 'lnk2', 'FEid', 'FXid', 'PxSD',
// from guessing
'cinf',
];
function revMap(map) {
var result = {};
Object.keys(map).forEach(function (key) { return result[map[key]] = key; });
return result;
}
exports.revMap = revMap;
function createEnum(prefix, def, map) {
var rev = revMap(map);
var decode = function (val) {
var value = val.split('.')[1];
if (value && !rev[value])
throw new Error("Unrecognized value for enum: '".concat(val, "'"));
return rev[value] || def;
};
var encode = function (val) {
if (val && !map[val])
throw new Error("Invalid value for enum: '".concat(val, "'"));
return "".concat(prefix, ".").concat(map[val] || map[def]);
};
return { decode: decode, encode: encode };
}
exports.createEnum = createEnum;
var ColorSpace;
(function (ColorSpace) {
ColorSpace[ColorSpace["RGB"] = 0] = "RGB";
ColorSpace[ColorSpace["HSB"] = 1] = "HSB";
ColorSpace[ColorSpace["CMYK"] = 2] = "CMYK";
ColorSpace[ColorSpace["Lab"] = 7] = "Lab";
ColorSpace[ColorSpace["Grayscale"] = 8] = "Grayscale";
})(ColorSpace = exports.ColorSpace || (exports.ColorSpace = {}));
var LayerMaskFlags;
(function (LayerMaskFlags) {
LayerMaskFlags[LayerMaskFlags["PositionRelativeToLayer"] = 1] = "PositionRelativeToLayer";
LayerMaskFlags[LayerMaskFlags["LayerMaskDisabled"] = 2] = "LayerMaskDisabled";
LayerMaskFlags[LayerMaskFlags["InvertLayerMaskWhenBlending"] = 4] = "InvertLayerMaskWhenBlending";
LayerMaskFlags[LayerMaskFlags["LayerMaskFromRenderingOtherData"] = 8] = "LayerMaskFromRenderingOtherData";
LayerMaskFlags[LayerMaskFlags["MaskHasParametersAppliedToIt"] = 16] = "MaskHasParametersAppliedToIt";
})(LayerMaskFlags = exports.LayerMaskFlags || (exports.LayerMaskFlags = {}));
var MaskParams;
(function (MaskParams) {
MaskParams[MaskParams["UserMaskDensity"] = 1] = "UserMaskDensity";
MaskParams[MaskParams["UserMaskFeather"] = 2] = "UserMaskFeather";
MaskParams[MaskParams["VectorMaskDensity"] = 4] = "VectorMaskDensity";
MaskParams[MaskParams["VectorMaskFeather"] = 8] = "VectorMaskFeather";
})(MaskParams = exports.MaskParams || (exports.MaskParams = {}));
var ChannelID;
(function (ChannelID) {
ChannelID[ChannelID["Color0"] = 0] = "Color0";
ChannelID[ChannelID["Color1"] = 1] = "Color1";
ChannelID[ChannelID["Color2"] = 2] = "Color2";
ChannelID[ChannelID["Color3"] = 3] = "Color3";
ChannelID[ChannelID["Transparency"] = -1] = "Transparency";
ChannelID[ChannelID["UserMask"] = -2] = "UserMask";
ChannelID[ChannelID["RealUserMask"] = -3] = "RealUserMask";
})(ChannelID = exports.ChannelID || (exports.ChannelID = {}));
var Compression;
(function (Compression) {
Compression[Compression["RawData"] = 0] = "RawData";
Compression[Compression["RleCompressed"] = 1] = "RleCompressed";
Compression[Compression["ZipWithoutPrediction"] = 2] = "ZipWithoutPrediction";
Compression[Compression["ZipWithPrediction"] = 3] = "ZipWithPrediction";
})(Compression = exports.Compression || (exports.Compression = {}));
function offsetForChannel(channelId, cmyk) {
switch (channelId) {
case 0 /* ChannelID.Color0 */: return 0;
case 1 /* ChannelID.Color1 */: return 1;
case 2 /* ChannelID.Color2 */: return 2;
case 3 /* ChannelID.Color3 */: return cmyk ? 3 : channelId + 1;
case -1 /* ChannelID.Transparency */: return cmyk ? 4 : 3;
default: return channelId + 1;
}
}
exports.offsetForChannel = offsetForChannel;
function clamp(value, min, max) {
return value < min ? min : (value > max ? max : value);
}
exports.clamp = clamp;
function hasAlpha(data) {
var size = data.width * data.height * 4;
for (var i = 3; i < size; i += 4) {
if (data.data[i] !== 255) {
return true;
}
}
return false;
}
exports.hasAlpha = hasAlpha;
function resetImageData(_a) {
var data = _a.data;
var buffer = new Uint32Array(data.buffer);
var size = buffer.length | 0;
for (var p = 0; p < size; p = (p + 1) | 0) {
buffer[p] = 0xff000000;
}
}
exports.resetImageData = resetImageData;
function decodeBitmap(input, output, width, height) {
for (var y = 0, p = 0, o = 0; y < height; y++) {
for (var x = 0; x < width;) {
var b = input[o++];
for (var i = 0; i < 8 && x < width; i++, x++) {
var v = b & 0x80 ? 0 : 255;
b = b << 1;
output[p++] = v;
output[p++] = v;
output[p++] = v;
output[p++] = 255;
}
}
}
}
exports.decodeBitmap = decodeBitmap;
function writeDataRaw(data, offset, width, height) {
if (!width || !height)
return undefined;
var array = new Uint8Array(width * height);
for (var i = 0; i < array.length; i++) {
array[i] = data.data[i * 4 + offset];
}
return array;
}
exports.writeDataRaw = writeDataRaw;
function writeDataRLE(buffer, _a, offsets, large) {
var data = _a.data, width = _a.width, height = _a.height;
if (!width || !height)
return undefined;
var stride = (4 * width) | 0;
var ol = 0;
var o = (offsets.length * (large ? 4 : 2) * height) | 0;
for (var _i = 0, offsets_1 = offsets; _i < offsets_1.length; _i++) {
var offset = offsets_1[_i];
for (var y = 0, p = offset | 0; y < height; y++) {
var strideStart = (y * stride) | 0;
var strideEnd = (strideStart + stride) | 0;
var lastIndex = (strideEnd + offset - 4) | 0;
var lastIndex2 = (lastIndex - 4) | 0;
var startOffset = o;
for (p = (strideStart + offset) | 0; p < strideEnd; p = (p + 4) | 0) {
if (p < lastIndex2) {
var value1 = data[p];
p = (p + 4) | 0;
var value2 = data[p];
p = (p + 4) | 0;
var value3 = data[p];
if (value1 === value2 && value1 === value3) {
var count = 3;
while (count < 128 && p < lastIndex && data[(p + 4) | 0] === value1) {
count = (count + 1) | 0;
p = (p + 4) | 0;
}
buffer[o++] = 1 - count;
buffer[o++] = value1;
}
else {
var countIndex = o;
var writeLast = true;
var count = 1;
buffer[o++] = 0;
buffer[o++] = value1;
while (p < lastIndex && count < 128) {
p = (p + 4) | 0;
value1 = value2;
value2 = value3;
value3 = data[p];
if (value1 === value2 && value1 === value3) {
p = (p - 12) | 0;
writeLast = false;
break;
}
else {
count++;
buffer[o++] = value1;
}
}
if (writeLast) {
if (count < 127) {
buffer[o++] = value2;
buffer[o++] = value3;
count += 2;
}
else if (count < 128) {
buffer[o++] = value2;
count++;
p = (p - 4) | 0;
}
else {
p = (p - 8) | 0;
}
}
buffer[countIndex] = count - 1;
}
}
else if (p === lastIndex) {
buffer[o++] = 0;
buffer[o++] = data[p];
}
else { // p === lastIndex2
buffer[o++] = 1;
buffer[o++] = data[p];
p = (p + 4) | 0;
buffer[o++] = data[p];
}
}
var length_1 = o - startOffset;
if (large) {
buffer[ol++] = (length_1 >> 24) & 0xff;
buffer[ol++] = (length_1 >> 16) & 0xff;
}
buffer[ol++] = (length_1 >> 8) & 0xff;
buffer[ol++] = length_1 & 0xff;
}
}
return buffer.slice(0, o);
}
exports.writeDataRLE = writeDataRLE;
function writeDataZipWithoutPrediction(_a, offsets) {
var data = _a.data, width = _a.width, height = _a.height;
var size = width * height;
var channel = new Uint8Array(size);
var buffers = [];
var totalLength = 0;
for (var _i = 0, offsets_2 = offsets; _i < offsets_2.length; _i++) {
var offset = offsets_2[_i];
for (var i = 0, o = offset; i < size; i++, o += 4) {
channel[i] = data[o];
}
var buffer = (0, pako_1.deflate)(channel);
buffers.push(buffer);
totalLength += buffer.byteLength;
}
if (buffers.length > 0) {
var buffer = new Uint8Array(totalLength);
var offset = 0;
for (var _b = 0, buffers_1 = buffers; _b < buffers_1.length; _b++) {
var b = buffers_1[_b];
buffer.set(b, offset);
offset += b.byteLength;
}
return buffer;
}
else {
return buffers[0];
}
}
exports.writeDataZipWithoutPrediction = writeDataZipWithoutPrediction;
var createCanvas = function () {
throw new Error('Canvas not initialized, use initializeCanvas method to set up createCanvas method');
};
exports.createCanvas = createCanvas;
var createCanvasFromData = function () {
throw new Error('Canvas not initialized, use initializeCanvas method to set up createCanvasFromData method');
};
exports.createCanvasFromData = createCanvasFromData;
var tempCanvas = undefined;
var createImageData = function (width, height) {
if (!tempCanvas)
tempCanvas = (0, exports.createCanvas)(1, 1);
return tempCanvas.getContext('2d').createImageData(width, height);
};
exports.createImageData = createImageData;
if (typeof document !== 'undefined') {
exports.createCanvas = function (width, height) {
var canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
return canvas;
};
exports.createCanvasFromData = function (data) {
var image = new Image();
image.src = 'data:image/jpeg;base64,' + (0, base64_js_1.fromByteArray)(data);
var canvas = document.createElement('canvas');
canvas.width = image.width;
canvas.height = image.height;
canvas.getContext('2d').drawImage(image, 0, 0);
return canvas;
};
}
function initializeCanvas(createCanvasMethod, createCanvasFromDataMethod, createImageDataMethod) {
exports.createCanvas = createCanvasMethod;
exports.createCanvasFromData = createCanvasFromDataMethod || exports.createCanvasFromData;
exports.createImageData = createImageDataMethod || exports.createImageData;
}
exports.initializeCanvas = initializeCanvas;
},{"base64-js":15,"pako":18}],8:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.resourceHandlersMap = exports.resourceHandlers = void 0;
var base64_js_1 = require("base64-js");
var psdReader_1 = require("./psdReader");
var psdWriter_1 = require("./psdWriter");
var helpers_1 = require("./helpers");
var utf8_1 = require("./utf8");
var descriptor_1 = require("./descriptor");
exports.resourceHandlers = [];
exports.resourceHandlersMap = {};
function addHandler(key, has, read, write) {
var handler = { key: key, has: has, read: read, write: write };
exports.resourceHandlers.push(handler);
exports.resourceHandlersMap[handler.key] = handler;
}
var LOG_MOCK_HANDLERS = false;
var RESOLUTION_UNITS = [undefined, 'PPI', 'PPCM'];
var MEASUREMENT_UNITS = [undefined, 'Inches', 'Centimeters', 'Points', 'Picas', 'Columns'];
var hex = '0123456789abcdef';
function charToNibble(code) {
return code <= 57 ? code - 48 : code - 87;
}
function byteAt(value, index) {
return (charToNibble(value.charCodeAt(index)) << 4) | charToNibble(value.charCodeAt(index + 1));
}
function readUtf8String(reader, length) {
var buffer = (0, psdReader_1.readBytes)(reader, length);
return (0, utf8_1.decodeString)(buffer);
}
function writeUtf8String(writer, value) {
var buffer = (0, utf8_1.encodeString)(value);
(0, psdWriter_1.writeBytes)(writer, buffer);
}
helpers_1.MOCK_HANDLERS && addHandler(1028, // IPTC-NAA record
function (// IPTC-NAA record
target) { return target._ir1028 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1028', left());
target._ir1028 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1028);
});
addHandler(1061, function (target) { return target.captionDigest !== undefined; }, function (reader, target) {
var captionDigest = '';
for (var i = 0; i < 16; i++) {
var byte = (0, psdReader_1.readUint8)(reader);
captionDigest += hex[byte >> 4];
captionDigest += hex[byte & 0xf];
}
target.captionDigest = captionDigest;
}, function (writer, target) {
for (var i = 0; i < 16; i++) {
(0, psdWriter_1.writeUint8)(writer, byteAt(target.captionDigest, i * 2));
}
});
addHandler(1060, function (target) { return target.xmpMetadata !== undefined; }, function (reader, target, left) { return target.xmpMetadata = readUtf8String(reader, left()); }, function (writer, target) { return writeUtf8String(writer, target.xmpMetadata); });
var Inte = (0, helpers_1.createEnum)('Inte', 'perceptual', {
'perceptual': 'Img ',
'saturation': 'Grp ',
'relative colorimetric': 'Clrm',
'absolute colorimetric': 'AClr',
});
addHandler(1082, function (target) { return target.printInformation !== undefined; }, function (reader, target) {
var _a, _b;
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.printInformation = {
printerName: desc.printerName || '',
renderingIntent: Inte.decode((_a = desc.Inte) !== null && _a !== void 0 ? _a : 'Inte.Img '),
};
var info = target.printInformation;
if (desc.PstS !== undefined)
info.printerManagesColors = desc.PstS;
if (desc['Nm '] !== undefined)
info.printerProfile = desc['Nm '];
if (desc.MpBl !== undefined)
info.blackPointCompensation = desc.MpBl;
if (desc.printSixteenBit !== undefined)
info.printSixteenBit = desc.printSixteenBit;
if (desc.hardProof !== undefined)
info.hardProof = desc.hardProof;
if (desc.printProofSetup) {
if ('Bltn' in desc.printProofSetup) {
info.proofSetup = { builtin: desc.printProofSetup.Bltn.split('.')[1] };
}
else {
info.proofSetup = {
profile: desc.printProofSetup.profile,
renderingIntent: Inte.decode((_b = desc.printProofSetup.Inte) !== null && _b !== void 0 ? _b : 'Inte.Img '),
blackPointCompensation: !!desc.printProofSetup.MpBl,
paperWhite: !!desc.printProofSetup.paperWhite,
};
}
}
}, function (writer, target) {
var _a, _b;
var info = target.printInformation;
var desc = {};
if (info.printerManagesColors) {
desc.PstS = true;
}
else {
if (info.hardProof !== undefined)
desc.hardProof = !!info.hardProof;
desc.ClrS = 'ClrS.RGBC'; // TODO: ???
desc['Nm '] = (_a = info.printerProfile) !== null && _a !== void 0 ? _a : 'CIE RGB';
}
desc.Inte = Inte.encode(info.renderingIntent);
if (!info.printerManagesColors)
desc.MpBl = !!info.blackPointCompensation;
desc.printSixteenBit = !!info.printSixteenBit;
desc.printerName = info.printerName || '';
if (info.proofSetup && 'profile' in info.proofSetup) {
desc.printProofSetup = {
profile: info.proofSetup.profile || '',
Inte: Inte.encode(info.proofSetup.renderingIntent),
MpBl: !!info.proofSetup.blackPointCompensation,
paperWhite: !!info.proofSetup.paperWhite,
};
}
else {
desc.printProofSetup = {
Bltn: ((_b = info.proofSetup) === null || _b === void 0 ? void 0 : _b.builtin) ? "builtinProof.".concat(info.proofSetup.builtin) : 'builtinProof.proofCMYK',
};
}
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'printOutput', desc);
});
helpers_1.MOCK_HANDLERS && addHandler(1083, // Print style
function (// Print style
target) { return target._ir1083 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1083', left());
target._ir1083 = (0, psdReader_1.readBytes)(reader, left());
// TODO:
// const desc = readVersionAndDescriptor(reader);
// console.log('1083', require('util').inspect(desc, false, 99, true));
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1083);
});
addHandler(1005, function (target) { return target.resolutionInfo !== undefined; }, function (reader, target) {
var horizontalResolution = (0, psdReader_1.readFixedPoint32)(reader);
var horizontalResolutionUnit = (0, psdReader_1.readUint16)(reader);
var widthUnit = (0, psdReader_1.readUint16)(reader);
var verticalResolution = (0, psdReader_1.readFixedPoint32)(reader);
var verticalResolutionUnit = (0, psdReader_1.readUint16)(reader);
var heightUnit = (0, psdReader_1.readUint16)(reader);
target.resolutionInfo = {
horizontalResolution: horizontalResolution,
horizontalResolutionUnit: RESOLUTION_UNITS[horizontalResolutionUnit] || 'PPI',
widthUnit: MEASUREMENT_UNITS[widthUnit] || 'Inches',
verticalResolution: verticalResolution,
verticalResolutionUnit: RESOLUTION_UNITS[verticalResolutionUnit] || 'PPI',
heightUnit: MEASUREMENT_UNITS[heightUnit] || 'Inches',
};
}, function (writer, target) {
var info = target.resolutionInfo;
(0, psdWriter_1.writeFixedPoint32)(writer, info.horizontalResolution || 0);
(0, psdWriter_1.writeUint16)(writer, Math.max(1, RESOLUTION_UNITS.indexOf(info.horizontalResolutionUnit)));
(0, psdWriter_1.writeUint16)(writer, Math.max(1, MEASUREMENT_UNITS.indexOf(info.widthUnit)));
(0, psdWriter_1.writeFixedPoint32)(writer, info.verticalResolution || 0);
(0, psdWriter_1.writeUint16)(writer, Math.max(1, RESOLUTION_UNITS.indexOf(info.verticalResolutionUnit)));
(0, psdWriter_1.writeUint16)(writer, Math.max(1, MEASUREMENT_UNITS.indexOf(info.heightUnit)));
});
var printScaleStyles = ['centered', 'size to fit', 'user defined'];
addHandler(1062, function (target) { return target.printScale !== undefined; }, function (reader, target) {
target.printScale = {
style: printScaleStyles[(0, psdReader_1.readInt16)(reader)],
x: (0, psdReader_1.readFloat32)(reader),
y: (0, psdReader_1.readFloat32)(reader),
scale: (0, psdReader_1.readFloat32)(reader),
};
}, function (writer, target) {
var _a = target.printScale, style = _a.style, x = _a.x, y = _a.y, scale = _a.scale;
(0, psdWriter_1.writeInt16)(writer, Math.max(0, printScaleStyles.indexOf(style)));
(0, psdWriter_1.writeFloat32)(writer, x || 0);
(0, psdWriter_1.writeFloat32)(writer, y || 0);
(0, psdWriter_1.writeFloat32)(writer, scale || 0);
});
addHandler(1006, function (target) { return target.alphaChannelNames !== undefined; }, function (reader, target, left) {
target.alphaChannelNames = [];
while (left()) {
var value = (0, psdReader_1.readPascalString)(reader, 1);
target.alphaChannelNames.push(value);
}
}, function (writer, target) {
for (var _i = 0, _a = target.alphaChannelNames; _i < _a.length; _i++) {
var name_1 = _a[_i];
(0, psdWriter_1.writePascalString)(writer, name_1, 1);
}
});
addHandler(1045, function (target) { return target.alphaChannelNames !== undefined; }, function (reader, target, left) {
target.alphaChannelNames = [];
while (left()) {
target.alphaChannelNames.push((0, psdReader_1.readUnicodeString)(reader));
}
}, function (writer, target) {
for (var _i = 0, _a = target.alphaChannelNames; _i < _a.length; _i++) {
var name_2 = _a[_i];
(0, psdWriter_1.writeUnicodeStringWithPadding)(writer, name_2);
}
});
helpers_1.MOCK_HANDLERS && addHandler(1077, function (target) { return target._ir1077 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1077', left());
target._ir1077 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1077);
});
addHandler(1053, function (target) { return target.alphaIdentifiers !== undefined; }, function (reader, target, left) {
target.alphaIdentifiers = [];
while (left() >= 4) {
target.alphaIdentifiers.push((0, psdReader_1.readUint32)(reader));
}
}, function (writer, target) {
for (var _i = 0, _a = target.alphaIdentifiers; _i < _a.length; _i++) {
var id = _a[_i];
(0, psdWriter_1.writeUint32)(writer, id);
}
});
addHandler(1010, function (target) { return target.backgroundColor !== undefined; }, function (reader, target) { return target.backgroundColor = (0, psdReader_1.readColor)(reader); }, function (writer, target) { return (0, psdWriter_1.writeColor)(writer, target.backgroundColor); });
addHandler(1037, function (target) { return target.globalAngle !== undefined; }, function (reader, target) { return target.globalAngle = (0, psdReader_1.readUint32)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint32)(writer, target.globalAngle); });
addHandler(1049, function (target) { return target.globalAltitude !== undefined; }, function (reader, target) { return target.globalAltitude = (0, psdReader_1.readUint32)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint32)(writer, target.globalAltitude); });
addHandler(1011, function (target) { return target.printFlags !== undefined; }, function (reader, target) {
target.printFlags = {
labels: !!(0, psdReader_1.readUint8)(reader),
cropMarks: !!(0, psdReader_1.readUint8)(reader),
colorBars: !!(0, psdReader_1.readUint8)(reader),
registrationMarks: !!(0, psdReader_1.readUint8)(reader),
negative: !!(0, psdReader_1.readUint8)(reader),
flip: !!(0, psdReader_1.readUint8)(reader),
interpolate: !!(0, psdReader_1.readUint8)(reader),
caption: !!(0, psdReader_1.readUint8)(reader),
printFlags: !!(0, psdReader_1.readUint8)(reader),
};
}, function (writer, target) {
var flags = target.printFlags;
(0, psdWriter_1.writeUint8)(writer, flags.labels ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.cropMarks ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.colorBars ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.registrationMarks ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.negative ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.flip ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.interpolate ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.caption ? 1 : 0);
(0, psdWriter_1.writeUint8)(writer, flags.printFlags ? 1 : 0);
});
helpers_1.MOCK_HANDLERS && addHandler(10000, // Print flags
function (// Print flags
target) { return target._ir10000 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 10000', left());
target._ir10000 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir10000);
});
helpers_1.MOCK_HANDLERS && addHandler(1013, // Color halftoning
function (// Color halftoning
target) { return target._ir1013 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1013', left());
target._ir1013 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1013);
});
helpers_1.MOCK_HANDLERS && addHandler(1016, // Color transfer functions
function (// Color transfer functions
target) { return target._ir1016 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1016', left());
target._ir1016 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1016);
});
addHandler(1024, function (target) { return target.layerState !== undefined; }, function (reader, target) { return target.layerState = (0, psdReader_1.readUint16)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint16)(writer, target.layerState); });
addHandler(1026, function (target) { return target.layersGroup !== undefined; }, function (reader, target, left) {
target.layersGroup = [];
while (left()) {
target.layersGroup.push((0, psdReader_1.readUint16)(reader));
}
}, function (writer, target) {
for (var _i = 0, _a = target.layersGroup; _i < _a.length; _i++) {
var g = _a[_i];
(0, psdWriter_1.writeUint16)(writer, g);
}
});
addHandler(1072, function (target) { return target.layerGroupsEnabledId !== undefined; }, function (reader, target, left) {
target.layerGroupsEnabledId = [];
while (left()) {
target.layerGroupsEnabledId.push((0, psdReader_1.readUint8)(reader));
}
}, function (writer, target) {
for (var _i = 0, _a = target.layerGroupsEnabledId; _i < _a.length; _i++) {
var id = _a[_i];
(0, psdWriter_1.writeUint8)(writer, id);
}
});
addHandler(1069, function (target) { return target.layerSelectionIds !== undefined; }, function (reader, target) {
var count = (0, psdReader_1.readUint16)(reader);
target.layerSelectionIds = [];
while (count--) {
target.layerSelectionIds.push((0, psdReader_1.readUint32)(reader));
}
}, function (writer, target) {
(0, psdWriter_1.writeUint16)(writer, target.layerSelectionIds.length);
for (var _i = 0, _a = target.layerSelectionIds; _i < _a.length; _i++) {
var id = _a[_i];
(0, psdWriter_1.writeUint32)(writer, id);
}
});
addHandler(1032, function (target) { return target.gridAndGuidesInformation !== undefined; }, function (reader, target) {
var version = (0, psdReader_1.readUint32)(reader);
var horizontal = (0, psdReader_1.readUint32)(reader);
var vertical = (0, psdReader_1.readUint32)(reader);
var count = (0, psdReader_1.readUint32)(reader);
if (version !== 1)
throw new Error("Invalid 1032 resource version: ".concat(version));
target.gridAndGuidesInformation = {
grid: { horizontal: horizontal, vertical: vertical },
guides: [],
};
for (var i = 0; i < count; i++) {
target.gridAndGuidesInformation.guides.push({
location: (0, psdReader_1.readUint32)(reader) / 32,
direction: (0, psdReader_1.readUint8)(reader) ? 'horizontal' : 'vertical'
});
}
}, function (writer, target) {
var info = target.gridAndGuidesInformation;
var grid = info.grid || { horizontal: 18 * 32, vertical: 18 * 32 };
var guides = info.guides || [];
(0, psdWriter_1.writeUint32)(writer, 1);
(0, psdWriter_1.writeUint32)(writer, grid.horizontal);
(0, psdWriter_1.writeUint32)(writer, grid.vertical);
(0, psdWriter_1.writeUint32)(writer, guides.length);
for (var _i = 0, guides_1 = guides; _i < guides_1.length; _i++) {
var g = guides_1[_i];
(0, psdWriter_1.writeUint32)(writer, g.location * 32);
(0, psdWriter_1.writeUint8)(writer, g.direction === 'horizontal' ? 1 : 0);
}
});
// 0 - normal, 7 - multiply, 8 - screen, 23 - difference
var onionSkinsBlendModes = [
'normal', undefined, undefined, undefined, undefined, undefined, undefined, 'multiply',
'screen', undefined, undefined, undefined, undefined, undefined, undefined, undefined,
undefined, undefined, undefined, undefined, undefined, undefined, undefined, 'difference',
];
addHandler(1078, // Onion Skins
function (// Onion Skins
target) { return target.onionSkins !== undefined; }, function (reader, target) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('1078', require('util').inspect(desc, false, 99, true));
target.onionSkins = {
enabled: desc.enab,
framesBefore: desc.numBefore,
framesAfter: desc.numAfter,
frameSpacing: desc.Spcn,
minOpacity: desc.minOpacity / 100,
maxOpacity: desc.maxOpacity / 100,
blendMode: onionSkinsBlendModes[desc.BlnM] || 'normal',
};
}, function (writer, target) {
var onionSkins = target.onionSkins;
var desc = {
Vrsn: 1,
enab: onionSkins.enabled,
numBefore: onionSkins.framesBefore,
numAfter: onionSkins.framesAfter,
Spcn: onionSkins.frameSpacing,
minOpacity: (onionSkins.minOpacity * 100) | 0,
maxOpacity: (onionSkins.maxOpacity * 100) | 0,
BlnM: Math.max(0, onionSkinsBlendModes.indexOf(onionSkins.blendMode)),
};
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler(1075, // Timeline Information
function (// Timeline Information
target) { return target.timelineInformation !== undefined; }, function (reader, target, _, options) {
var _a, _b;
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('1075', require('util').inspect(desc, false, 99, true));
target.timelineInformation = {
enabled: desc.enab,
frameStep: desc.frameStep,
frameRate: desc.frameRate,
time: desc.time,
duration: desc.duration,
workInTime: desc.workInTime,
workOutTime: desc.workOutTime,
repeats: desc.LCnt,
hasMotion: desc.hasMotion,
globalTracks: (0, descriptor_1.parseTrackList)(desc.globalTrackList, !!options.logMissingFeatures),
};
if ((_b = (_a = desc.audioClipGroupList) === null || _a === void 0 ? void 0 : _a.audioClipGroupList) === null || _b === void 0 ? void 0 : _b.length) {
target.timelineInformation.audioClipGroups = desc.audioClipGroupList.audioClipGroupList.map(function (g) { return ({
id: g.groupID,
muted: g.muted,
audioClips: g.audioClipList.map(function (_a) {
var clipID = _a.clipID, timeScope = _a.timeScope, muted = _a.muted, audioLevel = _a.audioLevel, frameReader = _a.frameReader;
return ({
id: clipID,
start: timeScope.Strt,
duration: timeScope.duration,
inTime: timeScope.inTime,
outTime: timeScope.outTime,
muted: muted,
audioLevel: audioLevel,
frameReader: {
type: frameReader.frameReaderType,
mediaDescriptor: frameReader.mediaDescriptor,
link: {
name: frameReader['Lnk ']['Nm '],
fullPath: frameReader['Lnk '].fullPath,
relativePath: frameReader['Lnk '].relPath,
},
},
});
}),
}); });
}
}, function (writer, target) {
var _a;
var timeline = target.timelineInformation;
var desc = {
Vrsn: 1,
enab: timeline.enabled,
frameStep: timeline.frameStep,
frameRate: timeline.frameRate,
time: timeline.time,
duration: timeline.duration,
workInTime: timeline.workInTime,
workOutTime: timeline.workOutTime,
LCnt: timeline.repeats,
globalTrackList: (0, descriptor_1.serializeTrackList)(timeline.globalTracks),
audioClipGroupList: {
audioClipGroupList: (_a = timeline.audioClipGroups) === null || _a === void 0 ? void 0 : _a.map(function (a) { return ({
groupID: a.id,
muted: a.muted,
audioClipList: a.audioClips.map(function (c) { return ({
clipID: c.id,
timeScope: {
Vrsn: 1,
Strt: c.start,
duration: c.duration,
inTime: c.inTime,
outTime: c.outTime,
},
frameReader: {
frameReaderType: c.frameReader.type,
descVersion: 1,
'Lnk ': {
descVersion: 1,
'Nm ': c.frameReader.link.name,
fullPath: c.frameReader.link.fullPath,
relPath: c.frameReader.link.relativePath,
},
mediaDescriptor: c.frameReader.mediaDescriptor,
},
muted: c.muted,
audioLevel: c.audioLevel,
}); }),
}); }),
},
hasMotion: timeline.hasMotion,
};
// console.log('WRITE:1075', require('util').inspect(desc, false, 99, true));
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc, 'anim');
});
addHandler(1076, // Sheet Disclosure
function (// Sheet Disclosure
target) { return target.sheetDisclosure !== undefined; }, function (reader, target) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log('1076', require('util').inspect(desc, false, 99, true));
target.sheetDisclosure = {};
if (desc.sheetTimelineOptions) {
target.sheetDisclosure.sheetTimelineOptions = desc.sheetTimelineOptions.map(function (o) { return ({
sheetID: o.sheetID,
sheetDisclosed: o.sheetDisclosed,
lightsDisclosed: o.lightsDisclosed,
meshesDisclosed: o.meshesDisclosed,
materialsDisclosed: o.materialsDisclosed,
}); });
}
}, function (writer, target) {
var disclosure = target.sheetDisclosure;
var desc = { Vrsn: 1 };
if (disclosure.sheetTimelineOptions) {
desc.sheetTimelineOptions = disclosure.sheetTimelineOptions.map(function (d) { return ({
Vrsn: 2,
sheetID: d.sheetID,
sheetDisclosed: d.sheetDisclosed,
lightsDisclosed: d.lightsDisclosed,
meshesDisclosed: d.meshesDisclosed,
materialsDisclosed: d.materialsDisclosed,
}); });
}
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
addHandler(1054, function (target) { return target.urlsList !== undefined; }, function (reader, target, _, options) {
var count = (0, psdReader_1.readUint32)(reader);
if (count) {
if (!options.throwForMissingFeatures)
return;
throw new Error('Not implemented: URL List');
}
// TODO: read actual URL list
target.urlsList = [];
}, function (writer, target) {
(0, psdWriter_1.writeUint32)(writer, target.urlsList.length);
// TODO: write actual URL list
if (target.urlsList.length) {
throw new Error('Not implemented: URL List');
}
});
helpers_1.MOCK_HANDLERS && addHandler(1050, // Slices
function (// Slices
target) { return target._ir1050 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1050', left());
target._ir1050 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1050);
});
addHandler(1064, function (target) { return target.pixelAspectRatio !== undefined; }, function (reader, target) {
if ((0, psdReader_1.readUint32)(reader) > 2)
throw new Error('Invalid pixelAspectRatio version');
target.pixelAspectRatio = { aspect: (0, psdReader_1.readFloat64)(reader) };
}, function (writer, target) {
(0, psdWriter_1.writeUint32)(writer, 2); // version
(0, psdWriter_1.writeFloat64)(writer, target.pixelAspectRatio.aspect);
});
addHandler(1041, function (target) { return target.iccUntaggedProfile !== undefined; }, function (reader, target) {
target.iccUntaggedProfile = !!(0, psdReader_1.readUint8)(reader);
}, function (writer, target) {
(0, psdWriter_1.writeUint8)(writer, target.iccUntaggedProfile ? 1 : 0);
});
helpers_1.MOCK_HANDLERS && addHandler(1039, // ICC Profile
function (// ICC Profile
target) { return target._ir1039 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1039', left());
target._ir1039 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1039);
});
addHandler(1044, function (target) { return target.idsSeedNumber !== undefined; }, function (reader, target) { return target.idsSeedNumber = (0, psdReader_1.readUint32)(reader); }, function (writer, target) { return (0, psdWriter_1.writeUint32)(writer, target.idsSeedNumber); });
addHandler(1036, function (target) { return target.thumbnail !== undefined || target.thumbnailRaw !== undefined; }, function (reader, target, left, options) {
var format = (0, psdReader_1.readUint32)(reader); // 1 = kJpegRGB, 0 = kRawRGB
var width = (0, psdReader_1.readUint32)(reader);
var height = (0, psdReader_1.readUint32)(reader);
(0, psdReader_1.readUint32)(reader); // widthBytes = (width * bits_per_pixel + 31) / 32 * 4.
(0, psdReader_1.readUint32)(reader); // totalSize = widthBytes * height * planes
(0, psdReader_1.readUint32)(reader); // sizeAfterCompression
var bitsPerPixel = (0, psdReader_1.readUint16)(reader); // 24
var planes = (0, psdReader_1.readUint16)(reader); // 1
if (format !== 1 || bitsPerPixel !== 24 || planes !== 1) {
options.logMissingFeatures && console.log("Invalid thumbnail data (format: ".concat(format, ", bitsPerPixel: ").concat(bitsPerPixel, ", planes: ").concat(planes, ")"));
(0, psdReader_1.skipBytes)(reader, left());
return;
}
var size = left();
var data = (0, psdReader_1.readBytes)(reader, size);
if (options.useRawThumbnail) {
target.thumbnailRaw = { width: width, height: height, data: data };
}
else if (data.byteLength) {
target.thumbnail = (0, helpers_1.createCanvasFromData)(data);
}
}, function (writer, target) {
var _a;
var width = 0;
var height = 0;
var data;
if (target.thumbnailRaw) {
width = target.thumbnailRaw.width;
height = target.thumbnailRaw.height;
data = target.thumbnailRaw.data;
}
else {
var dataUrl = (_a = target.thumbnail.toDataURL('image/jpeg', 1)) === null || _a === void 0 ? void 0 : _a.substring('data:image/jpeg;base64,'.length);
if (dataUrl) {
width = target.thumbnail.width;
height = target.thumbnail.height;
data = (0, base64_js_1.toByteArray)(dataUrl);
}
else {
data = new Uint8Array(0);
}
}
var bitsPerPixel = 24;
var widthBytes = Math.floor((width * bitsPerPixel + 31) / 32) * 4;
var planes = 1;
var totalSize = widthBytes * height * planes;
var sizeAfterCompression = data.length;
(0, psdWriter_1.writeUint32)(writer, 1); // 1 = kJpegRGB
(0, psdWriter_1.writeUint32)(writer, width);
(0, psdWriter_1.writeUint32)(writer, height);
(0, psdWriter_1.writeUint32)(writer, widthBytes);
(0, psdWriter_1.writeUint32)(writer, totalSize);
(0, psdWriter_1.writeUint32)(writer, sizeAfterCompression);
(0, psdWriter_1.writeUint16)(writer, bitsPerPixel);
(0, psdWriter_1.writeUint16)(writer, planes);
(0, psdWriter_1.writeBytes)(writer, data);
});
addHandler(1057, function (target) { return target.versionInfo !== undefined; }, function (reader, target, left) {
var version = (0, psdReader_1.readUint32)(reader);
if (version !== 1)
throw new Error('Invalid versionInfo version');
target.versionInfo = {
hasRealMergedData: !!(0, psdReader_1.readUint8)(reader),
writerName: (0, psdReader_1.readUnicodeString)(reader),
readerName: (0, psdReader_1.readUnicodeString)(reader),
fileVersion: (0, psdReader_1.readUint32)(reader),
};
(0, psdReader_1.skipBytes)(reader, left());
}, function (writer, target) {
var versionInfo = target.versionInfo;
(0, psdWriter_1.writeUint32)(writer, 1); // version
(0, psdWriter_1.writeUint8)(writer, versionInfo.hasRealMergedData ? 1 : 0);
(0, psdWriter_1.writeUnicodeString)(writer, versionInfo.writerName);
(0, psdWriter_1.writeUnicodeString)(writer, versionInfo.readerName);
(0, psdWriter_1.writeUint32)(writer, versionInfo.fileVersion);
});
helpers_1.MOCK_HANDLERS && addHandler(1058, // EXIF data 1.
function (// EXIF data 1.
target) { return target._ir1058 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1058', left());
target._ir1058 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1058);
});
addHandler(7000, function (target) { return target.imageReadyVariables !== undefined; }, function (reader, target, left) {
target.imageReadyVariables = readUtf8String(reader, left());
}, function (writer, target) {
writeUtf8String(writer, target.imageReadyVariables);
});
addHandler(7001, function (target) { return target.imageReadyDataSets !== undefined; }, function (reader, target, left) {
target.imageReadyDataSets = readUtf8String(reader, left());
}, function (writer, target) {
writeUtf8String(writer, target.imageReadyDataSets);
});
addHandler(1088, function (target) { return target.pathSelectionState !== undefined; }, function (reader, target, _left) {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
// console.log(require('util').inspect(desc, false, 99, true));
target.pathSelectionState = desc['null'];
}, function (writer, target) {
var desc = { 'null': target.pathSelectionState };
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
helpers_1.MOCK_HANDLERS && addHandler(1025, function (target) { return target._ir1025 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 1025', left());
target._ir1025 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir1025);
});
var FrmD = (0, helpers_1.createEnum)('FrmD', '', {
auto: 'Auto',
none: 'None',
dispose: 'Disp',
});
addHandler(4000, // Plug-In resource(s)
function (// Plug-In resource(s)
target) { return target.animations !== undefined; }, function (reader, target, left, _a) {
var logMissingFeatures = _a.logMissingFeatures, logDevFeatures = _a.logDevFeatures;
var key = (0, psdReader_1.readSignature)(reader);
if (key === 'mani') {
(0, psdReader_1.checkSignature)(reader, 'IRFR');
(0, psdReader_1.readSection)(reader, 1, function (left) {
var _loop_1 = function () {
(0, psdReader_1.checkSignature)(reader, '8BIM');
var key_1 = (0, psdReader_1.readSignature)(reader);
(0, psdReader_1.readSection)(reader, 1, function (left) {
if (key_1 === 'AnDs') {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
target.animations = {
// desc.AFSt ???
frames: desc.FrIn.map(function (x) { return ({
id: x.FrID,
delay: (x.FrDl || 0) / 100,
dispose: x.FrDs ? FrmD.decode(x.FrDs) : 'auto', // missing == auto
// x.FrGA ???
}); }),
animations: desc.FSts.map(function (x) { return ({
id: x.FsID,
frames: x.FsFr,
repeats: x.LCnt,
activeFrame: x.AFrm || 0,
}); }),
};
// console.log('#4000 AnDs', require('util').inspect(desc, false, 99, true));
// console.log('#4000 AnDs:result', require('util').inspect(target.animations, false, 99, true));
}
else if (key_1 === 'Roll') {
var bytes = (0, psdReader_1.readBytes)(reader, left());
logDevFeatures && console.log('#4000 Roll', bytes);
}
else {
logMissingFeatures && console.log('Unhandled subsection in #4000', key_1);
}
});
};
while (left()) {
_loop_1();
}
});
}
else if (key === 'mopt') {
var bytes = (0, psdReader_1.readBytes)(reader, left());
logDevFeatures && console.log('#4000 mopt', bytes);
}
else {
logMissingFeatures && console.log('Unhandled key in #4000:', key);
}
}, function (writer, target) {
if (target.animations) {
(0, psdWriter_1.writeSignature)(writer, 'mani');
(0, psdWriter_1.writeSignature)(writer, 'IRFR');
(0, psdWriter_1.writeSection)(writer, 1, function () {
(0, psdWriter_1.writeSignature)(writer, '8BIM');
(0, psdWriter_1.writeSignature)(writer, 'AnDs');
(0, psdWriter_1.writeSection)(writer, 1, function () {
var desc = {
// AFSt: 0, // ???
FrIn: [],
FSts: [],
};
for (var i = 0; i < target.animations.frames.length; i++) {
var f = target.animations.frames[i];
var frame = {
FrID: f.id,
};
if (f.delay)
frame.FrDl = (f.delay * 100) | 0;
frame.FrDs = FrmD.encode(f.dispose);
// if (i === 0) frame.FrGA = 30; // ???
desc.FrIn.push(frame);
}
for (var i = 0; i < target.animations.animations.length; i++) {
var a = target.animations.animations[i];
var anim = {
FsID: a.id,
AFrm: a.activeFrame | 0,
FsFr: a.frames,
LCnt: a.repeats | 0,
};
desc.FSts.push(anim);
}
(0, descriptor_1.writeVersionAndDescriptor)(writer, '', 'null', desc);
});
// writeSignature(writer, '8BIM');
// writeSignature(writer, 'Roll');
// writeSection(writer, 1, () => {
// writeZeros(writer, 8);
// });
});
}
});
// TODO: Unfinished
helpers_1.MOCK_HANDLERS && addHandler(4001, // Plug-In resource(s)
function (// Plug-In resource(s)
target) { return target._ir4001 !== undefined; }, function (reader, target, left, _a) {
var logMissingFeatures = _a.logMissingFeatures, logDevFeatures = _a.logDevFeatures;
if (helpers_1.MOCK_HANDLERS) {
LOG_MOCK_HANDLERS && console.log('image resource 4001', left());
target._ir4001 = (0, psdReader_1.readBytes)(reader, left());
return;
}
var key = (0, psdReader_1.readSignature)(reader);
if (key === 'mfri') {
var version = (0, psdReader_1.readUint32)(reader);
if (version !== 2)
throw new Error('Invalid mfri version');
var length_1 = (0, psdReader_1.readUint32)(reader);
var bytes = (0, psdReader_1.readBytes)(reader, length_1);
logDevFeatures && console.log('mfri', bytes);
}
else if (key === 'mset') {
var desc = (0, descriptor_1.readVersionAndDescriptor)(reader);
logDevFeatures && console.log('mset', desc);
}
else {
logMissingFeatures && console.log('Unhandled key in #4001', key);
}
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir4001);
});
// TODO: Unfinished
helpers_1.MOCK_HANDLERS && addHandler(4002, // Plug-In resource(s)
function (// Plug-In resource(s)
target) { return target._ir4002 !== undefined; }, function (reader, target, left) {
LOG_MOCK_HANDLERS && console.log('image resource 4002', left());
target._ir4002 = (0, psdReader_1.readBytes)(reader, left());
}, function (writer, target) {
(0, psdWriter_1.writeBytes)(writer, target._ir4002);
});
},{"./descriptor":4,"./helpers":7,"./psdReader":11,"./psdWriter":12,"./utf8":14,"base64-js":15}],9:[function(require,module,exports){
(function (Buffer){(function (){
"use strict";
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
var desc = Object.getOwnPropertyDescriptor(m, k);
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
desc = { enumerable: true, get: function() { return m[k]; } };
}
Object.defineProperty(o, k2, desc);
}) : (function(o, m, k, k2) {
if (k2 === undefined) k2 = k;
o[k2] = m[k];
}));
var __exportStar = (this && this.__exportStar) || function(m, exports) {
for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.writePsdBuffer = exports.writePsdUint8Array = exports.writePsd = exports.readPsd = exports.byteArrayToBase64 = exports.initializeCanvas = void 0;
var psdWriter_1 = require("./psdWriter");
var psdReader_1 = require("./psdReader");
__exportStar(require("./abr"), exports);
__exportStar(require("./csh"), exports);
var helpers_1 = require("./helpers");
Object.defineProperty(exports, "initializeCanvas", { enumerable: true, get: function () { return helpers_1.initializeCanvas; } });
__exportStar(require("./psd"), exports);
var base64_js_1 = require("base64-js");
exports.byteArrayToBase64 = base64_js_1.fromByteArray;
function readPsd(buffer, options) {
var reader = 'buffer' in buffer ?
(0, psdReader_1.createReader)(buffer.buffer, buffer.byteOffset, buffer.byteLength) :
(0, psdReader_1.createReader)(buffer);
return (0, psdReader_1.readPsd)(reader, options);
}
exports.readPsd = readPsd;
function writePsd(psd, options) {
var writer = (0, psdWriter_1.createWriter)();
(0, psdWriter_1.writePsd)(writer, psd, options);
return (0, psdWriter_1.getWriterBuffer)(writer);
}
exports.writePsd = writePsd;
function writePsdUint8Array(psd, options) {
var writer = (0, psdWriter_1.createWriter)();
(0, psdWriter_1.writePsd)(writer, psd, options);
return (0, psdWriter_1.getWriterBufferNoCopy)(writer);
}
exports.writePsdUint8Array = writePsdUint8Array;
function writePsdBuffer(psd, options) {
if (typeof Buffer === 'undefined') {
throw new Error('Buffer not supported on this platform');
}
return Buffer.from(writePsdUint8Array(psd, options));
}
exports.writePsdBuffer = writePsdBuffer;
}).call(this)}).call(this,require("buffer").Buffer)
},{"./abr":1,"./csh":3,"./helpers":7,"./psd":10,"./psdReader":11,"./psdWriter":12,"base64-js":15,"buffer":16}],10:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.SectionDividerType = exports.ColorMode = void 0;
var ColorMode;
(function (ColorMode) {
ColorMode[ColorMode["Bitmap"] = 0] = "Bitmap";
ColorMode[ColorMode["Grayscale"] = 1] = "Grayscale";
ColorMode[ColorMode["Indexed"] = 2] = "Indexed";
ColorMode[ColorMode["RGB"] = 3] = "RGB";
ColorMode[ColorMode["CMYK"] = 4] = "CMYK";
ColorMode[ColorMode["Multichannel"] = 7] = "Multichannel";
ColorMode[ColorMode["Duotone"] = 8] = "Duotone";
ColorMode[ColorMode["Lab"] = 9] = "Lab";
})(ColorMode = exports.ColorMode || (exports.ColorMode = {}));
var SectionDividerType;
(function (SectionDividerType) {
SectionDividerType[SectionDividerType["Other"] = 0] = "Other";
SectionDividerType[SectionDividerType["OpenFolder"] = 1] = "OpenFolder";
SectionDividerType[SectionDividerType["ClosedFolder"] = 2] = "ClosedFolder";
SectionDividerType[SectionDividerType["BoundingSectionDivider"] = 3] = "BoundingSectionDivider";
})(SectionDividerType = exports.SectionDividerType || (exports.SectionDividerType = {}));
},{}],11:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.readPattern = exports.readColor = exports.readSection = exports.readDataRLE = exports.readDataZipWithoutPrediction = exports.readPsd = exports.checkSignature = exports.skipBytes = exports.readAsciiString = exports.readUnicodeStringWithLength = exports.readUnicodeString = exports.readPascalString = exports.readSignature = exports.readBytes = exports.readFixedPointPath32 = exports.readFixedPoint32 = exports.readFloat64 = exports.readFloat32 = exports.readUint32 = exports.readInt32LE = exports.readInt32 = exports.readUint16 = exports.readInt16 = exports.peekUint8 = exports.readUint8 = exports.warnOrThrow = exports.createReader = exports.supportedColorModes = void 0;
var pako_1 = require("pako");
var helpers_1 = require("./helpers");
var additionalInfo_1 = require("./additionalInfo");
var imageResources_1 = require("./imageResources");
exports.supportedColorModes = [0 /* ColorMode.Bitmap */, 1 /* ColorMode.Grayscale */, 3 /* ColorMode.RGB */];
var colorModes = ['bitmap', 'grayscale', 'indexed', 'RGB', 'CMYK', 'multichannel', 'duotone', 'lab'];
function setupGrayscale(data) {
var size = data.width * data.height * 4;
for (var i = 0; i < size; i += 4) {
data.data[i + 1] = data.data[i];
data.data[i + 2] = data.data[i];
}
}
function createReader(buffer, offset, length) {
var view = new DataView(buffer, offset, length);
return { view: view, offset: 0, strict: false, debug: false };
}
exports.createReader = createReader;
function warnOrThrow(reader, message) {
if (reader.strict)
throw new Error(message);
if (reader.debug)
console.warn(message);
}
exports.warnOrThrow = warnOrThrow;
function readUint8(reader) {
reader.offset += 1;
return reader.view.getUint8(reader.offset - 1);
}
exports.readUint8 = readUint8;
function peekUint8(reader) {
return reader.view.getUint8(reader.offset);
}
exports.peekUint8 = peekUint8;
function readInt16(reader) {
reader.offset += 2;
return reader.view.getInt16(reader.offset - 2, false);
}
exports.readInt16 = readInt16;
function readUint16(reader) {
reader.offset += 2;
return reader.view.getUint16(reader.offset - 2, false);
}
exports.readUint16 = readUint16;
function readInt32(reader) {
reader.offset += 4;
return reader.view.getInt32(reader.offset - 4, false);
}
exports.readInt32 = readInt32;
function readInt32LE(reader) {
reader.offset += 4;
return reader.view.getInt32(reader.offset - 4, true);
}
exports.readInt32LE = readInt32LE;
function readUint32(reader) {
reader.offset += 4;
return reader.view.getUint32(reader.offset - 4, false);
}
exports.readUint32 = readUint32;
function readFloat32(reader) {
reader.offset += 4;
return reader.view.getFloat32(reader.offset - 4, false);
}
exports.readFloat32 = readFloat32;
function readFloat64(reader) {
reader.offset += 8;
return reader.view.getFloat64(reader.offset - 8, false);
}
exports.readFloat64 = readFloat64;
// 32-bit fixed-point number 16.16
function readFixedPoint32(reader) {
return readInt32(reader) / (1 << 16);
}
exports.readFixedPoint32 = readFixedPoint32;
// 32-bit fixed-point number 8.24
function readFixedPointPath32(reader) {
return readInt32(reader) / (1 << 24);
}
exports.readFixedPointPath32 = readFixedPointPath32;
function readBytes(reader, length) {
var start = reader.view.byteOffset + reader.offset;
reader.offset += length;
if ((start + length) > reader.view.buffer.byteLength) {
// fix for broken PSD files that are missing part of file at the end
warnOrThrow(reader, 'Reading bytes exceeding buffer length');
if (length > (100 * 1024 * 1024))
throw new Error('Reading past end of file'); // limit to 100MB
var result = new Uint8Array(length);
var len = Math.min(length, reader.view.byteLength - start);
if (len > 0)
result.set(new Uint8Array(reader.view.buffer, start, len));
return result;
}
else {
return new Uint8Array(reader.view.buffer, start, length);
}
}
exports.readBytes = readBytes;
function readSignature(reader) {
return readShortString(reader, 4);
}
exports.readSignature = readSignature;
function readPascalString(reader, padTo) {
var length = readUint8(reader);
var text = length ? readShortString(reader, length) : '';
while (++length % padTo) {
reader.offset++;
}
return text;
}
exports.readPascalString = readPascalString;
function readUnicodeString(reader) {
var length = readUint32(reader);
return readUnicodeStringWithLength(reader, length);
}
exports.readUnicodeString = readUnicodeString;
function readUnicodeStringWithLength(reader, length) {
var text = '';
while (length--) {
var value = readUint16(reader);
if (value || length > 0) { // remove trailing \0
text += String.fromCharCode(value);
}
}
return text;
}
exports.readUnicodeStringWithLength = readUnicodeStringWithLength;
function readAsciiString(reader, length) {
var text = '';
while (length--) {
text += String.fromCharCode(readUint8(reader));
}
return text;
}
exports.readAsciiString = readAsciiString;
function skipBytes(reader, count) {
reader.offset += count;
}
exports.skipBytes = skipBytes;
function checkSignature(reader, a, b) {
var offset = reader.offset;
var signature = readSignature(reader);
if (signature !== a && signature !== b) {
throw new Error("Invalid signature: '".concat(signature, "' at 0x").concat(offset.toString(16)));
}
}
exports.checkSignature = checkSignature;
function readShortString(reader, length) {
var buffer = readBytes(reader, length);
var result = '';
for (var i = 0; i < buffer.length; i++) {
result += String.fromCharCode(buffer[i]);
}
return result;
}
function isValidSignature(sig) {
return sig === '8BIM' || sig === 'MeSa' || sig === 'AgHg' || sig === 'PHUT' || sig === 'DCSR';
}
function readPsd(reader, options) {
var _a;
if (options === void 0) { options = {}; }
// header
checkSignature(reader, '8BPS');
var version = readUint16(reader);
if (version !== 1 && version !== 2)
throw new Error("Invalid PSD file version: ".concat(version));
skipBytes(reader, 6);
var channels = readUint16(reader);
var height = readUint32(reader);
var width = readUint32(reader);
var bitsPerChannel = readUint16(reader);
var colorMode = readUint16(reader);
var maxSize = version === 1 ? 30000 : 300000;
if (width > maxSize || height > maxSize)
throw new Error("Invalid size");
if (channels > 16)
throw new Error("Invalid channel count");
if (bitsPerChannel > 32)
throw new Error("Invalid bitsPerChannel count");
if (exports.supportedColorModes.indexOf(colorMode) === -1)
throw new Error("Color mode not supported: ".concat((_a = colorModes[colorMode]) !== null && _a !== void 0 ? _a : colorMode));
var psd = { width: width, height: height, channels: channels, bitsPerChannel: bitsPerChannel, colorMode: colorMode };
var opt = __assign(__assign({}, options), { large: version === 2 });
var fixOffsets = [0, 1, -1, 2, -2, 3, -3, 4, -4];
// color mode data
readSection(reader, 1, function (left) {
if (opt.throwForMissingFeatures)
throw new Error('Color mode data not supported');
skipBytes(reader, left());
});
// image resources
readSection(reader, 1, function (left) {
var _loop_1 = function () {
var sigOffset = reader.offset;
var sig = '';
// attempt to fix broken document by realigning with the signature
for (var _i = 0, fixOffsets_1 = fixOffsets; _i < fixOffsets_1.length; _i++) {
var offset = fixOffsets_1[_i];
try {
reader.offset = sigOffset + offset;
sig = readSignature(reader);
}
catch (_a) { }
if (isValidSignature(sig))
break;
}
if (!isValidSignature(sig)) {
throw new Error("Invalid signature: '".concat(sig, "' at 0x").concat((sigOffset).toString(16)));
}
var id = readUint16(reader);
readPascalString(reader, 2); // name
readSection(reader, 2, function (left) {
var handler = imageResources_1.resourceHandlersMap[id];
var skip = id === 1036 && !!opt.skipThumbnail;
if (!psd.imageResources) {
psd.imageResources = {};
}
if (handler && !skip) {
try {
handler.read(reader, psd.imageResources, left, opt);
}
catch (e) {
if (opt.throwForMissingFeatures)
throw e;
skipBytes(reader, left());
}
}
else {
// options.logMissingFeatures && console.log(`Unhandled image resource: ${id}`);
skipBytes(reader, left());
}
});
};
while (left()) {
_loop_1();
}
});
// layer and mask info
var globalAlpha = false;
readSection(reader, 1, function (left) {
globalAlpha = readLayerInfo(reader, psd, opt);
// SAI does not include this section
if (left() > 0) {
var globalLayerMaskInfo = readGlobalLayerMaskInfo(reader);
if (globalLayerMaskInfo)
psd.globalLayerMaskInfo = globalLayerMaskInfo;
}
else {
// revert back to end of section if exceeded section limits
// opt.logMissingFeatures && console.log('reverting to end of section');
skipBytes(reader, left());
}
while (left() > 0) {
// sometimes there are empty bytes here
while (left() && peekUint8(reader) === 0) {
// opt.logMissingFeatures && console.log('skipping 0 byte');
skipBytes(reader, 1);
}
if (left() >= 12) {
readAdditionalLayerInfo(reader, psd, psd, opt);
}
else {
// opt.logMissingFeatures && console.log('skipping leftover bytes', left());
skipBytes(reader, left());
}
}
}, undefined, opt.large);
var hasChildren = psd.children && psd.children.length;
var skipComposite = opt.skipCompositeImageData && (opt.skipLayerImageData || hasChildren);
if (!skipComposite) {
readImageData(reader, psd, globalAlpha, opt);
}
// TODO: show converted color mode instead of original PSD file color mode
// but add option to preserve file color mode (need to return image data instead of canvas in that case)
// psd.colorMode = ColorMode.RGB; // we convert all color modes to RGB
return psd;
}
exports.readPsd = readPsd;
function readLayerInfo(reader, psd, options) {
var globalAlpha = false;
readSection(reader, 2, function (left) {
var layerCount = readInt16(reader);
if (layerCount < 0) {
globalAlpha = true;
layerCount = -layerCount;
}
var layers = [];
var layerChannels = [];
for (var i = 0; i < layerCount; i++) {
var _a = readLayerRecord(reader, psd, options), layer = _a.layer, channels = _a.channels;
layers.push(layer);
layerChannels.push(channels);
}
if (!options.skipLayerImageData) {
for (var i = 0; i < layerCount; i++) {
readLayerChannelImageData(reader, psd, layers[i], layerChannels[i], options);
}
}
skipBytes(reader, left());
if (!psd.children)
psd.children = [];
var stack = [psd];
for (var i = layers.length - 1; i >= 0; i--) {
var l = layers[i];
var type = l.sectionDivider ? l.sectionDivider.type : 0 /* SectionDividerType.Other */;
if (type === 1 /* SectionDividerType.OpenFolder */ || type === 2 /* SectionDividerType.ClosedFolder */) {
l.opened = type === 1 /* SectionDividerType.OpenFolder */;
l.children = [];
stack[stack.length - 1].children.unshift(l);
stack.push(l);
}
else if (type === 3 /* SectionDividerType.BoundingSectionDivider */) {
stack.pop();
// this was workaround because I didn't know what `lsdk` section was, now it's probably not needed anymore
// } else if (l.name === '</Layer group>' && !l.sectionDivider && !l.top && !l.left && !l.bottom && !l.right) {
// // sometimes layer group terminator doesn't have sectionDivider, so we just guess here (PS bug ?)
// stack.pop();
}
else {
stack[stack.length - 1].children.unshift(l);
}
}
}, undefined, options.large);
return globalAlpha;
}
function readLayerRecord(reader, psd, options) {
var layer = {};
layer.top = readInt32(reader);
layer.left = readInt32(reader);
layer.bottom = readInt32(reader);
layer.right = readInt32(reader);
var channelCount = readUint16(reader);
var channels = [];
for (var i = 0; i < channelCount; i++) {
var channelID = readInt16(reader);
var channelLength = readUint32(reader);
if (options.large) {
if (channelLength !== 0)
throw new Error('Sizes larger than 4GB are not supported');
channelLength = readUint32(reader);
}
channels.push({ id: channelID, length: channelLength });
}
checkSignature(reader, '8BIM');
var blendMode = readSignature(reader);
if (!helpers_1.toBlendMode[blendMode])
throw new Error("Invalid blend mode: '".concat(blendMode, "'"));
layer.blendMode = helpers_1.toBlendMode[blendMode];
layer.opacity = readUint8(reader) / 0xff;
layer.clipping = readUint8(reader) === 1;
var flags = readUint8(reader);
layer.transparencyProtected = (flags & 0x01) !== 0;
layer.hidden = (flags & 0x02) !== 0;
// 0x04 - obsolete
// 0x08 - 1 for Photoshop 5.0 and later, tells if bit 4 has useful information
// 0x10 - pixel data irrelevant to appearance of document
// 0x20 - ???
// if (flags & 0x20) (layer as any)._2 = true; // TEMP !!!!
skipBytes(reader, 1);
readSection(reader, 1, function (left) {
var mask = readLayerMaskData(reader, options);
if (mask)
layer.mask = mask;
/*const blendingRanges =*/ readLayerBlendingRanges(reader);
layer.name = readPascalString(reader, 4);
while (left()) {
readAdditionalLayerInfo(reader, layer, psd, options);
}
});
return { layer: layer, channels: channels };
}
function readLayerMaskData(reader, options) {
return readSection(reader, 1, function (left) {
if (!left())
return undefined;
var mask = {};
mask.top = readInt32(reader);
mask.left = readInt32(reader);
mask.bottom = readInt32(reader);
mask.right = readInt32(reader);
mask.defaultColor = readUint8(reader);
var flags = readUint8(reader);
mask.positionRelativeToLayer = (flags & 1 /* LayerMaskFlags.PositionRelativeToLayer */) !== 0;
mask.disabled = (flags & 2 /* LayerMaskFlags.LayerMaskDisabled */) !== 0;
mask.fromVectorData = (flags & 8 /* LayerMaskFlags.LayerMaskFromRenderingOtherData */) !== 0;
if (flags & 16 /* LayerMaskFlags.MaskHasParametersAppliedToIt */) {
var params = readUint8(reader);
if (params & 1 /* MaskParams.UserMaskDensity */)
mask.userMaskDensity = readUint8(reader) / 0xff;
if (params & 2 /* MaskParams.UserMaskFeather */)
mask.userMaskFeather = readFloat64(reader);
if (params & 4 /* MaskParams.VectorMaskDensity */)
mask.vectorMaskDensity = readUint8(reader) / 0xff;
if (params & 8 /* MaskParams.VectorMaskFeather */)
mask.vectorMaskFeather = readFloat64(reader);
}
if (left() > 2) {
options.logMissingFeatures && console.log('Unhandled extra mask params');
// TODO: handle these values
/*const realFlags =*/ readUint8(reader);
/*const realUserMaskBackground =*/ readUint8(reader);
/*const top2 =*/ readInt32(reader);
/*const left2 =*/ readInt32(reader);
/*const bottom2 =*/ readInt32(reader);
/*const right2 =*/ readInt32(reader);
}
skipBytes(reader, left());
return mask;
});
}
function readLayerBlendingRanges(reader) {
return readSection(reader, 1, function (left) {
var compositeGrayBlendSource = readUint32(reader);
var compositeGraphBlendDestinationRange = readUint32(reader);
var ranges = [];
while (left()) {
var sourceRange = readUint32(reader);
var destRange = readUint32(reader);
ranges.push({ sourceRange: sourceRange, destRange: destRange });
}
return { compositeGrayBlendSource: compositeGrayBlendSource, compositeGraphBlendDestinationRange: compositeGraphBlendDestinationRange, ranges: ranges };
});
}
function readLayerChannelImageData(reader, psd, layer, channels, options) {
var layerWidth = (layer.right || 0) - (layer.left || 0);
var layerHeight = (layer.bottom || 0) - (layer.top || 0);
var cmyk = psd.colorMode === 4 /* ColorMode.CMYK */;
var imageData;
if (layerWidth && layerHeight) {
if (cmyk) {
imageData = { width: layerWidth, height: layerHeight, data: new Uint8ClampedArray(layerWidth * layerHeight * 5) };
for (var p = 4; p < imageData.data.byteLength; p += 5)
imageData.data[p] = 255;
}
else {
imageData = (0, helpers_1.createImageData)(layerWidth, layerHeight);
(0, helpers_1.resetImageData)(imageData);
}
}
if (helpers_1.RAW_IMAGE_DATA)
layer.imageDataRaw = [];
for (var _i = 0, channels_1 = channels; _i < channels_1.length; _i++) {
var channel = channels_1[_i];
if (channel.length === 0)
continue;
if (channel.length < 2)
throw new Error('Invalid channel length');
var start = reader.offset;
var compression = readUint16(reader);
if (channel.id === -2 /* ChannelID.UserMask */) {
var mask = layer.mask;
if (!mask)
throw new Error("Missing layer mask data");
var maskWidth = (mask.right || 0) - (mask.left || 0);
var maskHeight = (mask.bottom || 0) - (mask.top || 0);
if (maskWidth && maskHeight) {
var maskData = (0, helpers_1.createImageData)(maskWidth, maskHeight);
(0, helpers_1.resetImageData)(maskData);
var start_1 = reader.offset;
readData(reader, channel.length, maskData, compression, maskWidth, maskHeight, 0, options.large, 4);
if (helpers_1.RAW_IMAGE_DATA) {
layer.maskDataRaw = new Uint8Array(reader.view.buffer, reader.view.byteOffset + start_1, reader.offset - start_1);
}
setupGrayscale(maskData);
if (options.useImageData) {
mask.imageData = maskData;
}
else {
mask.canvas = (0, helpers_1.createCanvas)(maskWidth, maskHeight);
mask.canvas.getContext('2d').putImageData(maskData, 0, 0);
}
}
}
else {
var offset = (0, helpers_1.offsetForChannel)(channel.id, cmyk);
var targetData = imageData;
if (offset < 0) {
targetData = undefined;
if (options.throwForMissingFeatures) {
throw new Error("Channel not supported: ".concat(channel.id));
}
}
readData(reader, channel.length, targetData, compression, layerWidth, layerHeight, offset, options.large, cmyk ? 5 : 4);
if (helpers_1.RAW_IMAGE_DATA) {
layer.imageDataRaw[channel.id] = new Uint8Array(reader.view.buffer, reader.view.byteOffset + start + 2, channel.length - 2);
}
reader.offset = start + channel.length;
if (targetData && psd.colorMode === 1 /* ColorMode.Grayscale */) {
setupGrayscale(targetData);
}
}
}
if (imageData) {
if (cmyk) {
var cmykData = imageData;
imageData = (0, helpers_1.createImageData)(cmykData.width, cmykData.height);
cmykToRgb(cmykData, imageData, false);
}
if (options.useImageData) {
layer.imageData = imageData;
}
else {
layer.canvas = (0, helpers_1.createCanvas)(layerWidth, layerHeight);
layer.canvas.getContext('2d').putImageData(imageData, 0, 0);
}
}
}
function readData(reader, length, data, compression, width, height, offset, large, step) {
if (compression === 0 /* Compression.RawData */) {
readDataRaw(reader, data, width, height, step, offset);
}
else if (compression === 1 /* Compression.RleCompressed */) {
readDataRLE(reader, data, width, height, step, [offset], large);
}
else if (compression === 2 /* Compression.ZipWithoutPrediction */) {
readDataZipWithoutPrediction(reader, length, data, width, height, step, offset);
}
else if (compression === 3 /* Compression.ZipWithPrediction */) {
throw new Error("Compression type not supported: ".concat(compression));
}
else {
throw new Error("Invalid Compression type: ".concat(compression));
}
}
function readGlobalLayerMaskInfo(reader) {
return readSection(reader, 1, function (left) {
if (!left())
return undefined;
var overlayColorSpace = readUint16(reader);
var colorSpace1 = readUint16(reader);
var colorSpace2 = readUint16(reader);
var colorSpace3 = readUint16(reader);
var colorSpace4 = readUint16(reader);
var opacity = readUint16(reader) / 0xff;
var kind = readUint8(reader);
skipBytes(reader, left()); // 3 bytes of padding ?
return { overlayColorSpace: overlayColorSpace, colorSpace1: colorSpace1, colorSpace2: colorSpace2, colorSpace3: colorSpace3, colorSpace4: colorSpace4, opacity: opacity, kind: kind };
});
}
function readAdditionalLayerInfo(reader, target, psd, options) {
var sig = readSignature(reader);
if (sig !== '8BIM' && sig !== '8B64')
throw new Error("Invalid signature: '".concat(sig, "' at 0x").concat((reader.offset - 4).toString(16)));
var key = readSignature(reader);
// `largeAdditionalInfoKeys` fallback, because some keys don't have 8B64 signature even when they are 64bit
var u64 = sig === '8B64' || (options.large && helpers_1.largeAdditionalInfoKeys.indexOf(key) !== -1);
readSection(reader, 2, function (left) {
var handler = additionalInfo_1.infoHandlersMap[key];
if (handler) {
try {
handler.read(reader, target, left, psd, options);
}
catch (e) {
if (options.throwForMissingFeatures)
throw e;
}
}
else {
options.logMissingFeatures && console.log("Unhandled additional info: ".concat(key));
skipBytes(reader, left());
}
if (left()) {
options.logMissingFeatures && console.log("Unread ".concat(left(), " bytes left for additional info: ").concat(key));
skipBytes(reader, left());
}
}, false, u64);
}
function readImageData(reader, psd, globalAlpha, options) {
var compression = readUint16(reader);
if (exports.supportedColorModes.indexOf(psd.colorMode) === -1)
throw new Error("Color mode not supported: ".concat(psd.colorMode));
if (compression !== 0 /* Compression.RawData */ && compression !== 1 /* Compression.RleCompressed */)
throw new Error("Compression type not supported: ".concat(compression));
var imageData = (0, helpers_1.createImageData)(psd.width, psd.height);
(0, helpers_1.resetImageData)(imageData);
switch (psd.colorMode) {
case 0 /* ColorMode.Bitmap */: {
var bytes = void 0;
if (compression === 0 /* Compression.RawData */) {
bytes = readBytes(reader, Math.ceil(psd.width / 8) * psd.height);
}
else if (compression === 1 /* Compression.RleCompressed */) {
bytes = new Uint8Array(psd.width * psd.height);
readDataRLE(reader, { data: bytes, width: psd.width, height: psd.height }, psd.width, psd.height, 1, [0], options.large);
}
else {
throw new Error("Bitmap compression not supported: ".concat(compression));
}
(0, helpers_1.decodeBitmap)(bytes, imageData.data, psd.width, psd.height);
break;
}
case 3 /* ColorMode.RGB */:
case 1 /* ColorMode.Grayscale */: {
var channels = psd.colorMode === 1 /* ColorMode.Grayscale */ ? [0] : [0, 1, 2];
if (psd.channels && psd.channels > 3) {
for (var i = 3; i < psd.channels; i++) {
// TODO: store these channels in additional image data
channels.push(i);
}
}
else if (globalAlpha) {
channels.push(3);
}
if (compression === 0 /* Compression.RawData */) {
for (var i = 0; i < channels.length; i++) {
readDataRaw(reader, imageData, psd.width, psd.height, 4, channels[i]);
}
}
else if (compression === 1 /* Compression.RleCompressed */) {
var start = reader.offset;
readDataRLE(reader, imageData, psd.width, psd.height, 4, channels, options.large);
if (helpers_1.RAW_IMAGE_DATA)
psd.imageDataRaw = new Uint8Array(reader.view.buffer, reader.view.byteOffset + start, reader.offset - start);
}
if (psd.colorMode === 1 /* ColorMode.Grayscale */) {
setupGrayscale(imageData);
}
break;
}
case 4 /* ColorMode.CMYK */: {
if (psd.channels !== 4)
throw new Error("Invalid channel count");
var channels = [0, 1, 2, 3];
if (globalAlpha)
channels.push(4);
if (compression === 0 /* Compression.RawData */) {
throw new Error("Not implemented");
// TODO: ...
// for (let i = 0; i < channels.length; i++) {
// readDataRaw(reader, imageData, channels[i], psd.width, psd.height);
// }
}
else if (compression === 1 /* Compression.RleCompressed */) {
var cmykImageData = {
width: imageData.width,
height: imageData.height,
data: new Uint8Array(imageData.width * imageData.height * 5),
};
var start = reader.offset;
readDataRLE(reader, cmykImageData, psd.width, psd.height, 5, channels, options.large);
cmykToRgb(cmykImageData, imageData, true);
if (helpers_1.RAW_IMAGE_DATA)
psd.imageDataRaw = new Uint8Array(reader.view.buffer, reader.view.byteOffset + start, reader.offset - start);
}
break;
}
default: throw new Error("Color mode not supported: ".concat(psd.colorMode));
}
if (options.useImageData) {
psd.imageData = imageData;
}
else {
psd.canvas = (0, helpers_1.createCanvas)(psd.width, psd.height);
psd.canvas.getContext('2d').putImageData(imageData, 0, 0);
}
}
function cmykToRgb(cmyk, rgb, reverseAlpha) {
var size = rgb.width * rgb.height * 4;
var srcData = cmyk.data;
var dstData = rgb.data;
for (var src = 0, dst = 0; dst < size; src += 5, dst += 4) {
var c = srcData[src];
var m = srcData[src + 1];
var y = srcData[src + 2];
var k = srcData[src + 3];
dstData[dst] = ((((c * k) | 0) / 255) | 0);
dstData[dst + 1] = ((((m * k) | 0) / 255) | 0);
dstData[dst + 2] = ((((y * k) | 0) / 255) | 0);
dstData[dst + 3] = reverseAlpha ? 255 - srcData[src + 4] : srcData[src + 4];
}
// for (let src = 0, dst = 0; dst < size; src += 5, dst += 4) {
// const c = 1 - (srcData[src + 0] / 255);
// const m = 1 - (srcData[src + 1] / 255);
// const y = 1 - (srcData[src + 2] / 255);
// // const k = srcData[src + 3] / 255;
// dstData[dst + 0] = ((1 - c * 0.8) * 255) | 0;
// dstData[dst + 1] = ((1 - m * 0.8) * 255) | 0;
// dstData[dst + 2] = ((1 - y * 0.8) * 255) | 0;
// dstData[dst + 3] = reverseAlpha ? 255 - srcData[src + 4] : srcData[src + 4];
// }
}
function readDataRaw(reader, pixelData, width, height, step, offset) {
var size = width * height;
var buffer = readBytes(reader, size);
if (pixelData && offset < step) {
var data = pixelData.data;
for (var i = 0, p = offset | 0; i < size; i++, p = (p + step) | 0) {
data[p] = buffer[i];
}
}
}
function readDataZipWithoutPrediction(reader, length, pixelData, width, height, step, offset) {
var compressed = readBytes(reader, length);
var decompressed = (0, pako_1.inflate)(compressed);
var size = width * height;
if (pixelData && offset < step) {
var data = pixelData.data;
for (var i = 0, p = offset | 0; i < size; i++, p = (p + step) | 0) {
data[p] = decompressed[i];
}
}
}
exports.readDataZipWithoutPrediction = readDataZipWithoutPrediction;
function readDataRLE(reader, pixelData, _width, height, step, offsets, large) {
var data = pixelData && pixelData.data;
var lengths;
if (large) {
lengths = new Uint32Array(offsets.length * height);
for (var o = 0, li = 0; o < offsets.length; o++) {
for (var y = 0; y < height; y++, li++) {
lengths[li] = readUint32(reader);
}
}
}
else {
lengths = new Uint16Array(offsets.length * height);
for (var o = 0, li = 0; o < offsets.length; o++) {
for (var y = 0; y < height; y++, li++) {
lengths[li] = readUint16(reader);
}
}
}
var extraLimit = (step - 1) | 0; // 3 for rgb, 4 for cmyk
for (var c = 0, li = 0; c < offsets.length; c++) {
var offset = offsets[c] | 0;
var extra = c > extraLimit || offset > extraLimit;
if (!data || extra) {
for (var y = 0; y < height; y++, li++) {
skipBytes(reader, lengths[li]);
}
}
else {
for (var y = 0, p = offset | 0; y < height; y++, li++) {
var length_1 = lengths[li];
var buffer = readBytes(reader, length_1);
for (var i = 0; i < length_1; i++) {
var header = buffer[i];
if (header > 128) {
var value = buffer[++i];
header = (256 - header) | 0;
for (var j = 0; j <= header; j = (j + 1) | 0) {
data[p] = value;
p = (p + step) | 0;
}
}
else if (header < 128) {
for (var j = 0; j <= header; j = (j + 1) | 0) {
data[p] = buffer[++i];
p = (p + step) | 0;
}
}
else {
// ignore 128
}
// This showed up on some images from non-photoshop programs, ignoring it seems to work just fine.
// if (i >= length) throw new Error(`Invalid RLE data: exceeded buffer size ${i}/${length}`);
}
}
}
}
}
exports.readDataRLE = readDataRLE;
function readSection(reader, round, func, skipEmpty, eightBytes) {
if (skipEmpty === void 0) { skipEmpty = true; }
if (eightBytes === void 0) { eightBytes = false; }
var length = readUint32(reader);
if (eightBytes) {
if (length !== 0)
throw new Error('Sizes larger than 4GB are not supported');
length = readUint32(reader);
}
if (length <= 0 && skipEmpty)
return undefined;
var end = reader.offset + length;
if (end > reader.view.byteLength)
throw new Error('Section exceeds file size');
var result = func(function () { return end - reader.offset; });
if (reader.offset !== end) {
if (reader.offset > end) {
warnOrThrow(reader, 'Exceeded section limits');
}
else {
warnOrThrow(reader, "Unread section data"); // : ${end - reader.offset} bytes at 0x${reader.offset.toString(16)}`);
}
}
while (end % round)
end++;
reader.offset = end;
return result;
}
exports.readSection = readSection;
function readColor(reader) {
var colorSpace = readUint16(reader);
switch (colorSpace) {
case 0 /* ColorSpace.RGB */: {
var r = readUint16(reader) / 257;
var g = readUint16(reader) / 257;
var b = readUint16(reader) / 257;
skipBytes(reader, 2);
return { r: r, g: g, b: b };
}
case 1 /* ColorSpace.HSB */: {
var h = readUint16(reader) / 0xffff;
var s = readUint16(reader) / 0xffff;
var b = readUint16(reader) / 0xffff;
skipBytes(reader, 2);
return { h: h, s: s, b: b };
}
case 2 /* ColorSpace.CMYK */: {
var c = readUint16(reader) / 257;
var m = readUint16(reader) / 257;
var y = readUint16(reader) / 257;
var k = readUint16(reader) / 257;
return { c: c, m: m, y: y, k: k };
}
case 7 /* ColorSpace.Lab */: {
var l = readInt16(reader) / 10000;
var ta = readInt16(reader);
var tb = readInt16(reader);
var a = ta < 0 ? (ta / 12800) : (ta / 12700);
var b = tb < 0 ? (tb / 12800) : (tb / 12700);
skipBytes(reader, 2);
return { l: l, a: a, b: b };
}
case 8 /* ColorSpace.Grayscale */: {
var k = readUint16(reader) * 255 / 10000;
skipBytes(reader, 6);
return { k: k };
}
default:
throw new Error('Invalid color space');
}
}
exports.readColor = readColor;
function readPattern(reader) {
readUint32(reader); // length
var version = readUint32(reader);
if (version !== 1)
throw new Error("Invalid pattern version: ".concat(version));
var colorMode = readUint32(reader);
var x = readInt16(reader);
var y = readInt16(reader);
// we only support RGB and grayscale for now
if (colorMode !== 3 /* ColorMode.RGB */ && colorMode !== 1 /* ColorMode.Grayscale */ && colorMode !== 2 /* ColorMode.Indexed */) {
throw new Error("Unsupported pattern color mode: ".concat(colorMode));
}
var name = readUnicodeString(reader);
var id = readPascalString(reader, 1);
var palette = [];
if (colorMode === 2 /* ColorMode.Indexed */) {
for (var i = 0; i < 256; i++) {
palette.push({
r: readUint8(reader),
g: readUint8(reader),
b: readUint8(reader),
});
}
skipBytes(reader, 4); // no idea what this is
}
// virtual memory array list
var version2 = readUint32(reader);
if (version2 !== 3)
throw new Error("Invalid pattern VMAL version: ".concat(version2));
readUint32(reader); // length
var top = readUint32(reader);
var left = readUint32(reader);
var bottom = readUint32(reader);
var right = readUint32(reader);
var channelsCount = readUint32(reader);
var width = right - left;
var height = bottom - top;
var data = new Uint8Array(width * height * 4);
for (var i = 3; i < data.byteLength; i += 4) {
data[i] = 255;
}
for (var i = 0, ch = 0; i < (channelsCount + 2); i++) {
var has = readUint32(reader);
if (!has)
continue;
var length_2 = readUint32(reader);
var pixelDepth = readUint32(reader);
var ctop = readUint32(reader);
var cleft = readUint32(reader);
var cbottom = readUint32(reader);
var cright = readUint32(reader);
var pixelDepth2 = readUint16(reader);
var compressionMode = readUint8(reader); // 0 - raw, 1 - zip
var dataLength = length_2 - (4 + 16 + 2 + 1);
var cdata = readBytes(reader, dataLength);
if (pixelDepth !== 8 || pixelDepth2 !== 8) {
throw new Error('16bit pixel depth not supported for patterns');
}
var w = cright - cleft;
var h = cbottom - ctop;
var ox = cleft - left;
var oy = ctop - top;
if (compressionMode === 0) {
if (colorMode === 3 /* ColorMode.RGB */ && ch < 3) {
for (var y_1 = 0; y_1 < h; y_1++) {
for (var x_1 = 0; x_1 < w; x_1++) {
var src = x_1 + y_1 * w;
var dst = (ox + x_1 + (y_1 + oy) * width) * 4;
data[dst + ch] = cdata[src];
}
}
}
if (colorMode === 1 /* ColorMode.Grayscale */ && ch < 1) {
for (var y_2 = 0; y_2 < h; y_2++) {
for (var x_2 = 0; x_2 < w; x_2++) {
var src = x_2 + y_2 * w;
var dst = (ox + x_2 + (y_2 + oy) * width) * 4;
var value = cdata[src];
data[dst + 0] = value;
data[dst + 1] = value;
data[dst + 2] = value;
}
}
}
if (colorMode === 2 /* ColorMode.Indexed */) {
// TODO:
throw new Error('Indexed pattern color mode not implemented');
}
}
else if (compressionMode === 1) {
// console.log({ colorMode });
// require('fs').writeFileSync('zip.bin', Buffer.from(cdata));
// const data = require('zlib').inflateRawSync(cdata);
// const data = require('zlib').unzipSync(cdata);
// console.log(data);
// throw new Error('Zip compression not supported for pattern');
// throw new Error('Unsupported pattern compression');
console.error('Unsupported pattern compression');
name += ' (failed to decode)';
}
else {
throw new Error('Invalid pattern compression mode');
}
ch++;
}
// TODO: use canvas instead of data ?
return { id: id, name: name, x: x, y: y, bounds: { x: left, y: top, w: width, h: height }, data: data };
}
exports.readPattern = readPattern;
},{"./additionalInfo":2,"./helpers":7,"./imageResources":8,"pako":18}],12:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.writeColor = exports.writePsd = exports.writeSection = exports.writeUnicodeStringWithPadding = exports.writeUnicodeString = exports.writePascalString = exports.writeSignature = exports.writeZeros = exports.writeBytes = exports.writeFixedPointPath32 = exports.writeFixedPoint32 = exports.writeFloat64 = exports.writeFloat32 = exports.writeUint32 = exports.writeInt32 = exports.writeUint16 = exports.writeInt16 = exports.writeUint8 = exports.getWriterBufferNoCopy = exports.getWriterBuffer = exports.createWriter = void 0;
var helpers_1 = require("./helpers");
var additionalInfo_1 = require("./additionalInfo");
var imageResources_1 = require("./imageResources");
function createWriter(size) {
if (size === void 0) { size = 4096; }
var buffer = new ArrayBuffer(size);
var view = new DataView(buffer);
var offset = 0;
return { buffer: buffer, view: view, offset: offset };
}
exports.createWriter = createWriter;
function getWriterBuffer(writer) {
return writer.buffer.slice(0, writer.offset);
}
exports.getWriterBuffer = getWriterBuffer;
function getWriterBufferNoCopy(writer) {
return new Uint8Array(writer.buffer, 0, writer.offset);
}
exports.getWriterBufferNoCopy = getWriterBufferNoCopy;
function writeUint8(writer, value) {
var offset = addSize(writer, 1);
writer.view.setUint8(offset, value);
}
exports.writeUint8 = writeUint8;
function writeInt16(writer, value) {
var offset = addSize(writer, 2);
writer.view.setInt16(offset, value, false);
}
exports.writeInt16 = writeInt16;
function writeUint16(writer, value) {
var offset = addSize(writer, 2);
writer.view.setUint16(offset, value, false);
}
exports.writeUint16 = writeUint16;
function writeInt32(writer, value) {
var offset = addSize(writer, 4);
writer.view.setInt32(offset, value, false);
}
exports.writeInt32 = writeInt32;
function writeUint32(writer, value) {
var offset = addSize(writer, 4);
writer.view.setUint32(offset, value, false);
}
exports.writeUint32 = writeUint32;
function writeFloat32(writer, value) {
var offset = addSize(writer, 4);
writer.view.setFloat32(offset, value, false);
}
exports.writeFloat32 = writeFloat32;
function writeFloat64(writer, value) {
var offset = addSize(writer, 8);
writer.view.setFloat64(offset, value, false);
}
exports.writeFloat64 = writeFloat64;
// 32-bit fixed-point number 16.16
function writeFixedPoint32(writer, value) {
writeInt32(writer, value * (1 << 16));
}
exports.writeFixedPoint32 = writeFixedPoint32;
// 32-bit fixed-point number 8.24
function writeFixedPointPath32(writer, value) {
writeInt32(writer, value * (1 << 24));
}
exports.writeFixedPointPath32 = writeFixedPointPath32;
function writeBytes(writer, buffer) {
if (buffer) {
ensureSize(writer, writer.offset + buffer.length);
var bytes = new Uint8Array(writer.buffer);
bytes.set(buffer, writer.offset);
writer.offset += buffer.length;
}
}
exports.writeBytes = writeBytes;
function writeZeros(writer, count) {
for (var i = 0; i < count; i++) {
writeUint8(writer, 0);
}
}
exports.writeZeros = writeZeros;
function writeSignature(writer, signature) {
if (signature.length !== 4)
throw new Error("Invalid signature: '".concat(signature, "'"));
for (var i = 0; i < 4; i++) {
writeUint8(writer, signature.charCodeAt(i));
}
}
exports.writeSignature = writeSignature;
function writePascalString(writer, text, padTo) {
var length = text.length;
writeUint8(writer, length);
for (var i = 0; i < length; i++) {
var code = text.charCodeAt(i);
writeUint8(writer, code < 128 ? code : '?'.charCodeAt(0));
}
while (++length % padTo) {
writeUint8(writer, 0);
}
}
exports.writePascalString = writePascalString;
function writeUnicodeString(writer, text) {
writeUint32(writer, text.length);
for (var i = 0; i < text.length; i++) {
writeUint16(writer, text.charCodeAt(i));
}
}
exports.writeUnicodeString = writeUnicodeString;
function writeUnicodeStringWithPadding(writer, text) {
writeUint32(writer, text.length + 1);
for (var i = 0; i < text.length; i++) {
writeUint16(writer, text.charCodeAt(i));
}
writeUint16(writer, 0);
}
exports.writeUnicodeStringWithPadding = writeUnicodeStringWithPadding;
function getLargestLayerSize(layers) {
if (layers === void 0) { layers = []; }
var max = 0;
for (var _i = 0, layers_1 = layers; _i < layers_1.length; _i++) {
var layer = layers_1[_i];
if (layer.canvas || layer.imageData) {
var _a = getLayerDimentions(layer), width = _a.width, height = _a.height;
max = Math.max(max, 2 * height + 2 * width * height);
}
if (layer.children) {
max = Math.max(max, getLargestLayerSize(layer.children));
}
}
return max;
}
function writeSection(writer, round, func, writeTotalLength, large) {
if (writeTotalLength === void 0) { writeTotalLength = false; }
if (large === void 0) { large = false; }
if (large)
writeUint32(writer, 0);
var offset = writer.offset;
writeUint32(writer, 0);
func();
var length = writer.offset - offset - 4;
var len = length;
while ((len % round) !== 0) {
writeUint8(writer, 0);
len++;
}
if (writeTotalLength) {
length = len;
}
writer.view.setUint32(offset, length, false);
}
exports.writeSection = writeSection;
function writePsd(writer, psd, options) {
if (options === void 0) { options = {}; }
if (!(+psd.width > 0 && +psd.height > 0))
throw new Error('Invalid document size');
if ((psd.width > 30000 || psd.height > 30000) && !options.psb)
throw new Error('Document size is too large (max is 30000x30000, use PSB format instead)');
var imageResources = psd.imageResources || {};
var opt = __assign(__assign({}, options), { layerIds: new Set(), layerToId: new Map() });
if (opt.generateThumbnail) {
imageResources = __assign(__assign({}, imageResources), { thumbnail: createThumbnail(psd) });
}
var imageData = psd.imageData;
if (!imageData && psd.canvas) {
imageData = psd.canvas.getContext('2d').getImageData(0, 0, psd.canvas.width, psd.canvas.height);
}
if (imageData && (psd.width !== imageData.width || psd.height !== imageData.height))
throw new Error('Document canvas must have the same size as document');
var globalAlpha = !!imageData && (0, helpers_1.hasAlpha)(imageData);
var maxBufferSize = Math.max(getLargestLayerSize(psd.children), 4 * 2 * psd.width * psd.height + 2 * psd.height);
var tempBuffer = new Uint8Array(maxBufferSize);
// header
writeSignature(writer, '8BPS');
writeUint16(writer, options.psb ? 2 : 1); // version
writeZeros(writer, 6);
writeUint16(writer, globalAlpha ? 4 : 3); // channels
writeUint32(writer, psd.height);
writeUint32(writer, psd.width);
writeUint16(writer, 8); // bits per channel
writeUint16(writer, 3 /* ColorMode.RGB */); // we only support saving RGB right now
// color mode data
writeSection(writer, 1, function () {
// TODO: implement
});
// image resources
writeSection(writer, 1, function () {
var _loop_1 = function (handler) {
if (handler.has(imageResources)) {
writeSignature(writer, '8BIM');
writeUint16(writer, handler.key);
writePascalString(writer, '', 2);
writeSection(writer, 2, function () { return handler.write(writer, imageResources); });
}
};
for (var _i = 0, resourceHandlers_1 = imageResources_1.resourceHandlers; _i < resourceHandlers_1.length; _i++) {
var handler = resourceHandlers_1[_i];
_loop_1(handler);
}
});
// layer and mask info
writeSection(writer, 2, function () {
writeLayerInfo(tempBuffer, writer, psd, globalAlpha, opt);
writeGlobalLayerMaskInfo(writer, psd.globalLayerMaskInfo);
writeAdditionalLayerInfo(writer, psd, psd, opt);
}, undefined, !!opt.psb);
// image data
var channels = globalAlpha ? [0, 1, 2, 3] : [0, 1, 2];
var data = imageData || {
data: new Uint8Array(4 * psd.width * psd.height),
width: psd.width,
height: psd.height,
};
writeUint16(writer, 1 /* Compression.RleCompressed */); // Photoshop doesn't support zip compression of composite image data
if (helpers_1.RAW_IMAGE_DATA && psd.imageDataRaw) {
console.log('writing raw image data');
writeBytes(writer, psd.imageDataRaw);
}
else {
writeBytes(writer, (0, helpers_1.writeDataRLE)(tempBuffer, data, channels, !!options.psb));
}
}
exports.writePsd = writePsd;
function writeLayerInfo(tempBuffer, writer, psd, globalAlpha, options) {
writeSection(writer, 4, function () {
var _a;
var layers = [];
addChildren(layers, psd.children);
if (!layers.length)
layers.push({});
writeInt16(writer, globalAlpha ? -layers.length : layers.length);
var layersData = layers.map(function (l, i) { return getChannels(tempBuffer, l, i === 0, options); });
var _loop_2 = function (layerData) {
var layer = layerData.layer, top_1 = layerData.top, left = layerData.left, bottom = layerData.bottom, right = layerData.right, channels = layerData.channels;
writeInt32(writer, top_1);
writeInt32(writer, left);
writeInt32(writer, bottom);
writeInt32(writer, right);
writeUint16(writer, channels.length);
for (var _e = 0, channels_1 = channels; _e < channels_1.length; _e++) {
var c = channels_1[_e];
writeInt16(writer, c.channelId);
if (options.psb)
writeUint32(writer, 0);
writeUint32(writer, c.length);
}
writeSignature(writer, '8BIM');
writeSignature(writer, helpers_1.fromBlendMode[layer.blendMode] || 'norm');
writeUint8(writer, Math.round((0, helpers_1.clamp)((_a = layer.opacity) !== null && _a !== void 0 ? _a : 1, 0, 1) * 255));
writeUint8(writer, layer.clipping ? 1 : 0);
var flags = 0x08; // 1 for Photoshop 5.0 and later, tells if bit 4 has useful information
if (layer.transparencyProtected)
flags |= 0x01;
if (layer.hidden)
flags |= 0x02;
if (layer.vectorMask || (layer.sectionDivider && layer.sectionDivider.type !== 0 /* SectionDividerType.Other */)) {
flags |= 0x10; // pixel data irrelevant to appearance of document
}
if (layer.effects && (0, additionalInfo_1.hasMultiEffects)(layer.effects)) { // TODO: this is not correct
flags |= 0x20; // just guessing this one, might be completely incorrect
}
// if ('_2' in layer) flags |= 0x20; // TEMP!!!
writeUint8(writer, flags);
writeUint8(writer, 0); // filler
writeSection(writer, 1, function () {
writeLayerMaskData(writer, layer, layerData);
writeLayerBlendingRanges(writer, psd);
writePascalString(writer, layer.name || '', 4);
writeAdditionalLayerInfo(writer, layer, psd, options);
});
};
// layer records
for (var _i = 0, layersData_1 = layersData; _i < layersData_1.length; _i++) {
var layerData = layersData_1[_i];
_loop_2(layerData);
}
// layer channel image data
for (var _b = 0, layersData_2 = layersData; _b < layersData_2.length; _b++) {
var layerData = layersData_2[_b];
for (var _c = 0, _d = layerData.channels; _c < _d.length; _c++) {
var channel = _d[_c];
writeUint16(writer, channel.compression);
if (channel.buffer) {
writeBytes(writer, channel.buffer);
}
}
}
}, true, options.psb);
}
function writeLayerMaskData(writer, _a, layerData) {
var mask = _a.mask;
writeSection(writer, 1, function () {
if (!mask)
return;
var m = layerData.mask || {};
writeInt32(writer, m.top);
writeInt32(writer, m.left);
writeInt32(writer, m.bottom);
writeInt32(writer, m.right);
writeUint8(writer, mask.defaultColor);
var params = 0;
if (mask.userMaskDensity !== undefined)
params |= 1 /* MaskParams.UserMaskDensity */;
if (mask.userMaskFeather !== undefined)
params |= 2 /* MaskParams.UserMaskFeather */;
if (mask.vectorMaskDensity !== undefined)
params |= 4 /* MaskParams.VectorMaskDensity */;
if (mask.vectorMaskFeather !== undefined)
params |= 8 /* MaskParams.VectorMaskFeather */;
var flags = 0;
if (mask.disabled)
flags |= 2 /* LayerMaskFlags.LayerMaskDisabled */;
if (mask.positionRelativeToLayer)
flags |= 1 /* LayerMaskFlags.PositionRelativeToLayer */;
if (mask.fromVectorData)
flags |= 8 /* LayerMaskFlags.LayerMaskFromRenderingOtherData */;
if (params)
flags |= 16 /* LayerMaskFlags.MaskHasParametersAppliedToIt */;
writeUint8(writer, flags);
if (params) {
writeUint8(writer, params);
if (mask.userMaskDensity !== undefined)
writeUint8(writer, Math.round(mask.userMaskDensity * 0xff));
if (mask.userMaskFeather !== undefined)
writeFloat64(writer, mask.userMaskFeather);
if (mask.vectorMaskDensity !== undefined)
writeUint8(writer, Math.round(mask.vectorMaskDensity * 0xff));
if (mask.vectorMaskFeather !== undefined)
writeFloat64(writer, mask.vectorMaskFeather);
}
// TODO: handle rest of the fields
writeZeros(writer, 2);
});
}
function writeLayerBlendingRanges(writer, psd) {
writeSection(writer, 1, function () {
writeUint32(writer, 65535);
writeUint32(writer, 65535);
var channels = psd.channels || 0; // TODO: use always 4 instead ?
// channels = 4; // TESTING
for (var i = 0; i < channels; i++) {
writeUint32(writer, 65535);
writeUint32(writer, 65535);
}
});
}
function writeGlobalLayerMaskInfo(writer, info) {
writeSection(writer, 1, function () {
if (info) {
writeUint16(writer, info.overlayColorSpace);
writeUint16(writer, info.colorSpace1);
writeUint16(writer, info.colorSpace2);
writeUint16(writer, info.colorSpace3);
writeUint16(writer, info.colorSpace4);
writeUint16(writer, info.opacity * 0xff);
writeUint8(writer, info.kind);
writeZeros(writer, 3);
}
});
}
function writeAdditionalLayerInfo(writer, target, psd, options) {
var _loop_3 = function (handler) {
var key = handler.key;
if (key === 'Txt2' && options.invalidateTextLayers)
return "continue";
if (key === 'vmsk' && options.psb)
key = 'vsms';
if (handler.has(target)) {
var large = options.psb && helpers_1.largeAdditionalInfoKeys.indexOf(key) !== -1;
writeSignature(writer, large ? '8B64' : '8BIM');
writeSignature(writer, key);
var fourBytes = key === 'Txt2' || key === 'luni' || key === 'vmsk' || key === 'artb' || key === 'artd' ||
key === 'vogk' || key === 'SoLd' || key === 'lnk2' || key === 'vscg' || key === 'vsms' || key === 'GdFl' ||
key === 'lmfx' || key === 'lrFX' || key === 'cinf' || key === 'PlLd' || key === 'Anno';
writeSection(writer, fourBytes ? 4 : 2, function () {
handler.write(writer, target, psd, options);
}, key !== 'Txt2' && key !== 'cinf' && key !== 'extn', large);
}
};
for (var _i = 0, infoHandlers_1 = additionalInfo_1.infoHandlers; _i < infoHandlers_1.length; _i++) {
var handler = infoHandlers_1[_i];
_loop_3(handler);
}
}
function addChildren(layers, children) {
if (!children)
return;
for (var _i = 0, children_1 = children; _i < children_1.length; _i++) {
var c = children_1[_i];
if (c.children && c.canvas)
throw new Error("Invalid layer, cannot have both 'canvas' and 'children' properties");
if (c.children && c.imageData)
throw new Error("Invalid layer, cannot have both 'imageData' and 'children' properties");
if (c.children) {
layers.push({
name: '</Layer group>',
sectionDivider: {
type: 3 /* SectionDividerType.BoundingSectionDivider */,
},
// TESTING
// nameSource: 'lset',
// id: [4, 0, 0, 8, 11, 0, 0, 0, 0, 14][layers.length] || 0,
// layerColor: 'none',
// timestamp: [1611346817.349021, 0, 0, 1611346817.349175, 1611346817.3491833, 0, 0, 0, 0, 1611346817.349832][layers.length] || 0,
// protected: {},
// referencePoint: { x: 0, y: 0 },
});
addChildren(layers, c.children);
layers.push(__assign({ sectionDivider: {
type: c.opened === false ? 2 /* SectionDividerType.ClosedFolder */ : 1 /* SectionDividerType.OpenFolder */,
key: helpers_1.fromBlendMode[c.blendMode] || 'pass',
subType: 0,
} }, c));
}
else {
layers.push(__assign({}, c));
}
}
}
function resizeBuffer(writer, size) {
var newLength = writer.buffer.byteLength;
do {
newLength *= 2;
} while (size > newLength);
var newBuffer = new ArrayBuffer(newLength);
var newBytes = new Uint8Array(newBuffer);
var oldBytes = new Uint8Array(writer.buffer);
newBytes.set(oldBytes);
writer.buffer = newBuffer;
writer.view = new DataView(writer.buffer);
}
function ensureSize(writer, size) {
if (size > writer.buffer.byteLength) {
resizeBuffer(writer, size);
}
}
function addSize(writer, size) {
var offset = writer.offset;
ensureSize(writer, writer.offset += size);
return offset;
}
function createThumbnail(psd) {
var canvas = (0, helpers_1.createCanvas)(10, 10);
var scale = 1;
if (psd.width > psd.height) {
canvas.width = 160;
canvas.height = Math.floor(psd.height * (canvas.width / psd.width));
scale = canvas.width / psd.width;
}
else {
canvas.height = 160;
canvas.width = Math.floor(psd.width * (canvas.height / psd.height));
scale = canvas.height / psd.height;
}
var context = canvas.getContext('2d');
context.scale(scale, scale);
if (psd.imageData) {
var temp = (0, helpers_1.createCanvas)(psd.imageData.width, psd.imageData.height);
temp.getContext('2d').putImageData(psd.imageData, 0, 0);
context.drawImage(temp, 0, 0);
}
else if (psd.canvas) {
context.drawImage(psd.canvas, 0, 0);
}
return canvas;
}
function getChannels(tempBuffer, layer, background, options) {
var layerData = getLayerChannels(tempBuffer, layer, background, options);
var mask = layer.mask;
if (mask) {
var top_2 = mask.top | 0;
var left = mask.left | 0;
var right = mask.right | 0;
var bottom = mask.bottom | 0;
var _a = getLayerDimentions(mask), width = _a.width, height = _a.height;
var imageData = mask.imageData;
if (!imageData && mask.canvas && width && height) {
imageData = mask.canvas.getContext('2d').getImageData(0, 0, width, height);
}
if (width && height && imageData) {
right = left + width;
bottom = top_2 + height;
if (imageData.width !== width || imageData.height !== height) {
throw new Error('Invalid imageData dimentions');
}
var buffer = void 0;
var compression = void 0;
if (helpers_1.RAW_IMAGE_DATA && layer.maskDataRaw) {
// console.log('written raw layer image data');
buffer = layer.maskDataRaw;
compression = 1 /* Compression.RleCompressed */;
}
else if (options.compress) {
buffer = (0, helpers_1.writeDataZipWithoutPrediction)(imageData, [0]);
compression = 2 /* Compression.ZipWithoutPrediction */;
}
else {
buffer = (0, helpers_1.writeDataRLE)(tempBuffer, imageData, [0], !!options.psb);
compression = 1 /* Compression.RleCompressed */;
}
layerData.mask = { top: top_2, left: left, right: right, bottom: bottom };
layerData.channels.push({ channelId: -2 /* ChannelID.UserMask */, compression: compression, buffer: buffer, length: 2 + buffer.length });
}
else {
layerData.mask = { top: 0, left: 0, right: 0, bottom: 0 };
layerData.channels.push({ channelId: -2 /* ChannelID.UserMask */, compression: 0 /* Compression.RawData */, buffer: new Uint8Array(0), length: 0 });
}
}
return layerData;
}
function getLayerDimentions(_a) {
var canvas = _a.canvas, imageData = _a.imageData;
return imageData || canvas || { width: 0, height: 0 };
}
function cropImageData(data, left, top, width, height) {
var croppedData = (0, helpers_1.createImageData)(width, height);
var srcData = data.data;
var dstData = croppedData.data;
for (var y = 0; y < height; y++) {
for (var x = 0; x < width; x++) {
var src = ((x + left) + (y + top) * width) * 4;
var dst = (x + y * width) * 4;
dstData[dst] = srcData[src];
dstData[dst + 1] = srcData[src + 1];
dstData[dst + 2] = srcData[src + 2];
dstData[dst + 3] = srcData[src + 3];
}
}
return croppedData;
}
function getLayerChannels(tempBuffer, layer, background, options) {
var _a;
var top = layer.top | 0;
var left = layer.left | 0;
var right = layer.right | 0;
var bottom = layer.bottom | 0;
var channels = [
{ channelId: -1 /* ChannelID.Transparency */, compression: 0 /* Compression.RawData */, buffer: undefined, length: 2 },
{ channelId: 0 /* ChannelID.Color0 */, compression: 0 /* Compression.RawData */, buffer: undefined, length: 2 },
{ channelId: 1 /* ChannelID.Color1 */, compression: 0 /* Compression.RawData */, buffer: undefined, length: 2 },
{ channelId: 2 /* ChannelID.Color2 */, compression: 0 /* Compression.RawData */, buffer: undefined, length: 2 },
];
var _b = getLayerDimentions(layer), width = _b.width, height = _b.height;
if (!(layer.canvas || layer.imageData) || !width || !height) {
right = left;
bottom = top;
return { layer: layer, top: top, left: left, right: right, bottom: bottom, channels: channels };
}
right = left + width;
bottom = top + height;
var data = layer.imageData || layer.canvas.getContext('2d').getImageData(0, 0, width, height);
if (options.trimImageData) {
var trimmed = trimData(data);
if (trimmed.left !== 0 || trimmed.top !== 0 || trimmed.right !== data.width || trimmed.bottom !== data.height) {
left += trimmed.left;
top += trimmed.top;
right -= (data.width - trimmed.right);
bottom -= (data.height - trimmed.bottom);
width = right - left;
height = bottom - top;
if (!width || !height) {
return { layer: layer, top: top, left: left, right: right, bottom: bottom, channels: channels };
}
if (layer.imageData) {
data = cropImageData(data, trimmed.left, trimmed.top, width, height);
}
else {
data = layer.canvas.getContext('2d').getImageData(trimmed.left, trimmed.top, width, height);
}
}
}
var channelIds = [
0 /* ChannelID.Color0 */,
1 /* ChannelID.Color1 */,
2 /* ChannelID.Color2 */,
];
if (!background || options.noBackground || layer.mask || (0, helpers_1.hasAlpha)(data) || (helpers_1.RAW_IMAGE_DATA && ((_a = layer.imageDataRaw) === null || _a === void 0 ? void 0 : _a['-1']))) {
channelIds.unshift(-1 /* ChannelID.Transparency */);
}
channels = channelIds.map(function (channelId) {
var offset = (0, helpers_1.offsetForChannel)(channelId, false); // TODO: psd.colorMode === ColorMode.CMYK);
var buffer;
var compression;
if (helpers_1.RAW_IMAGE_DATA && layer.imageDataRaw) {
// console.log('written raw layer image data');
buffer = layer.imageDataRaw[channelId];
compression = 1 /* Compression.RleCompressed */;
}
else if (options.compress) {
buffer = (0, helpers_1.writeDataZipWithoutPrediction)(data, [offset]);
compression = 2 /* Compression.ZipWithoutPrediction */;
}
else {
buffer = (0, helpers_1.writeDataRLE)(tempBuffer, data, [offset], !!options.psb);
compression = 1 /* Compression.RleCompressed */;
}
return { channelId: channelId, compression: compression, buffer: buffer, length: 2 + buffer.length };
});
return { layer: layer, top: top, left: left, right: right, bottom: bottom, channels: channels };
}
function isRowEmpty(_a, y, left, right) {
var data = _a.data, width = _a.width;
var start = ((y * width + left) * 4 + 3) | 0;
var end = (start + (right - left) * 4) | 0;
for (var i = start; i < end; i = (i + 4) | 0) {
if (data[i] !== 0) {
return false;
}
}
return true;
}
function isColEmpty(_a, x, top, bottom) {
var data = _a.data, width = _a.width;
var stride = (width * 4) | 0;
var start = (top * stride + x * 4 + 3) | 0;
for (var y = top, i = start; y < bottom; y++, i = (i + stride) | 0) {
if (data[i] !== 0) {
return false;
}
}
return true;
}
function trimData(data) {
var top = 0;
var left = 0;
var right = data.width;
var bottom = data.height;
while (top < bottom && isRowEmpty(data, top, left, right))
top++;
while (bottom > top && isRowEmpty(data, bottom - 1, left, right))
bottom--;
while (left < right && isColEmpty(data, left, top, bottom))
left++;
while (right > left && isColEmpty(data, right - 1, top, bottom))
right--;
return { top: top, left: left, right: right, bottom: bottom };
}
function writeColor(writer, color) {
if (!color) {
writeUint16(writer, 0 /* ColorSpace.RGB */);
writeZeros(writer, 8);
}
else if ('r' in color) {
writeUint16(writer, 0 /* ColorSpace.RGB */);
writeUint16(writer, Math.round(color.r * 257));
writeUint16(writer, Math.round(color.g * 257));
writeUint16(writer, Math.round(color.b * 257));
writeUint16(writer, 0);
}
else if ('l' in color) {
writeUint16(writer, 7 /* ColorSpace.Lab */);
writeInt16(writer, Math.round(color.l * 10000));
writeInt16(writer, Math.round(color.a < 0 ? (color.a * 12800) : (color.a * 12700)));
writeInt16(writer, Math.round(color.b < 0 ? (color.b * 12800) : (color.b * 12700)));
writeUint16(writer, 0);
}
else if ('h' in color) {
writeUint16(writer, 1 /* ColorSpace.HSB */);
writeUint16(writer, Math.round(color.h * 0xffff));
writeUint16(writer, Math.round(color.s * 0xffff));
writeUint16(writer, Math.round(color.b * 0xffff));
writeUint16(writer, 0);
}
else if ('c' in color) {
writeUint16(writer, 2 /* ColorSpace.CMYK */);
writeUint16(writer, Math.round(color.c * 257));
writeUint16(writer, Math.round(color.m * 257));
writeUint16(writer, Math.round(color.y * 257));
writeUint16(writer, Math.round(color.k * 257));
}
else {
writeUint16(writer, 8 /* ColorSpace.Grayscale */);
writeUint16(writer, Math.round(color.k * 10000 / 255));
writeZeros(writer, 6);
}
}
exports.writeColor = writeColor;
},{"./additionalInfo":2,"./helpers":7,"./imageResources":8}],13:[function(require,module,exports){
"use strict";
var __assign = (this && this.__assign) || function () {
__assign = Object.assign || function(t) {
for (var s, i = 1, n = arguments.length; i < n; i++) {
s = arguments[i];
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p))
t[p] = s[p];
}
return t;
};
return __assign.apply(this, arguments);
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.encodeEngineData = exports.decodeEngineData = void 0;
var defaultFont = {
name: 'MyriadPro-Regular',
script: 0,
type: 0,
synthetic: 0,
};
var defaultParagraphStyle = {
justification: 'left',
firstLineIndent: 0,
startIndent: 0,
endIndent: 0,
spaceBefore: 0,
spaceAfter: 0,
autoHyphenate: true,
hyphenatedWordSize: 6,
preHyphen: 2,
postHyphen: 2,
consecutiveHyphens: 8,
zone: 36,
wordSpacing: [0.8, 1, 1.33],
letterSpacing: [0, 0, 0],
glyphSpacing: [1, 1, 1],
autoLeading: 1.2,
leadingType: 0,
hanging: false,
burasagari: false,
kinsokuOrder: 0,
everyLineComposer: false,
};
var defaultStyle = {
font: defaultFont,
fontSize: 12,
fauxBold: false,
fauxItalic: false,
autoLeading: true,
leading: 0,
horizontalScale: 1,
verticalScale: 1,
tracking: 0,
autoKerning: true,
kerning: 0,
baselineShift: 0,
fontCaps: 0,
fontBaseline: 0,
underline: false,
strikethrough: false,
ligatures: true,
dLigatures: false,
baselineDirection: 2,
tsume: 0,
styleRunAlignment: 2,
language: 0,
noBreak: false,
fillColor: { r: 0, g: 0, b: 0 },
strokeColor: { r: 0, g: 0, b: 0 },
fillFlag: true,
strokeFlag: false,
fillFirst: true,
yUnderline: 1,
outlineWidth: 1,
characterDirection: 0,
hindiNumbers: false,
kashida: 1,
diacriticPos: 2,
};
var defaultGridInfo = {
isOn: false,
show: false,
size: 18,
leading: 22,
color: { r: 0, g: 0, b: 255 },
leadingFillColor: { r: 0, g: 0, b: 255 },
alignLineHeightToGridFlags: false,
};
var paragraphStyleKeys = [
'justification', 'firstLineIndent', 'startIndent', 'endIndent', 'spaceBefore', 'spaceAfter',
'autoHyphenate', 'hyphenatedWordSize', 'preHyphen', 'postHyphen', 'consecutiveHyphens',
'zone', 'wordSpacing', 'letterSpacing', 'glyphSpacing', 'autoLeading', 'leadingType',
'hanging', 'burasagari', 'kinsokuOrder', 'everyLineComposer',
];
var styleKeys = [
'font', 'fontSize', 'fauxBold', 'fauxItalic', 'autoLeading', 'leading', 'horizontalScale',
'verticalScale', 'tracking', 'autoKerning', 'kerning', 'baselineShift', 'fontCaps', 'fontBaseline',
'underline', 'strikethrough', 'ligatures', 'dLigatures', 'baselineDirection', 'tsume',
'styleRunAlignment', 'language', 'noBreak', 'fillColor', 'strokeColor', 'fillFlag',
'strokeFlag', 'fillFirst', 'yUnderline', 'outlineWidth', 'characterDirection', 'hindiNumbers',
'kashida', 'diacriticPos',
];
var antialias = ['none', 'crisp', 'strong', 'smooth', 'sharp'];
var justification = ['left', 'right', 'center'];
function upperFirst(value) {
return value.substr(0, 1).toUpperCase() + value.substr(1);
}
function decodeColor(color) {
var c = color.Values;
if (color.Type === 0) { // grayscale
return { r: c[1] * 255, g: c[1] * 255, b: c[1] * 255 }; // , c[0] * 255];
}
else { // rgb
return { r: c[1] * 255, g: c[2] * 255, b: c[3] * 255, a: c[0] }; // , c[0] * 255];
}
}
function encodeColor(color) {
if (color && 'r' in color) {
return ['a' in color ? color.a : 1, color.r / 255, color.g / 255, color.b / 255];
}
else {
return [0, 0, 0, 0];
}
}
function arraysEqual(a, b) {
if (!a || !b)
return false;
if (a.length !== b.length)
return false;
for (var i = 0; i < a.length; i++)
if (a[i] !== b[i])
return false;
return true;
}
function objectsEqual(a, b) {
if (!a || !b)
return false;
for (var _i = 0, _a = Object.keys(a); _i < _a.length; _i++) {
var key = _a[_i];
if (a[key] !== b[key])
return false;
}
for (var _b = 0, _c = Object.keys(b); _b < _c.length; _b++) {
var key = _c[_b];
if (a[key] !== b[key])
return false;
}
return true;
}
function findOrAddFont(fonts, font) {
for (var i = 0; i < fonts.length; i++) {
if (fonts[i].name === font.name)
return i;
}
fonts.push(font);
return fonts.length - 1;
}
function decodeObject(obj, keys, fonts) {
var result = {};
for (var _i = 0, keys_1 = keys; _i < keys_1.length; _i++) {
var key = keys_1[_i];
var Key = upperFirst(key);
if (obj[Key] === undefined)
continue;
if (key === 'justification') {
result[key] = justification[obj[Key]];
}
else if (key === 'font') {
result[key] = fonts[obj[Key]];
}
else if (key === 'fillColor' || key === 'strokeColor') {
result[key] = decodeColor(obj[Key]);
}
else {
result[key] = obj[Key];
}
}
return result;
}
function encodeObject(obj, keys, fonts) {
var _a;
var result = {};
for (var _i = 0, keys_2 = keys; _i < keys_2.length; _i++) {
var key = keys_2[_i];
var Key = upperFirst(key);
if (obj[key] === undefined)
continue;
if (key === 'justification') {
result[Key] = justification.indexOf((_a = obj[key]) !== null && _a !== void 0 ? _a : 'left');
}
else if (key === 'font') {
result[Key] = findOrAddFont(fonts, obj[key]);
}
else if (key === 'fillColor' || key === 'strokeColor') {
result[Key] = { Type: 1, Values: encodeColor(obj[key]) };
}
else {
result[Key] = obj[key];
}
}
return result;
}
function decodeParagraphStyle(obj, fonts) {
return decodeObject(obj, paragraphStyleKeys, fonts);
}
function decodeStyle(obj, fonts) {
return decodeObject(obj, styleKeys, fonts);
}
function encodeParagraphStyle(obj, fonts) {
return encodeObject(obj, paragraphStyleKeys, fonts);
}
function encodeStyle(obj, fonts) {
return encodeObject(obj, styleKeys, fonts);
}
function deduplicateValues(base, runs, keys) {
if (!runs.length)
return;
var _loop_1 = function (key) {
var value = runs[0].style[key];
if (value !== undefined) {
var identical = false;
if (Array.isArray(value)) {
identical = runs.every(function (r) { return arraysEqual(r.style[key], value); });
}
else if (typeof value === 'object') {
identical = runs.every(function (r) { return objectsEqual(r.style[key], value); });
}
else {
identical = runs.every(function (r) { return r.style[key] === value; });
}
if (identical) {
base[key] = value;
}
}
var styleValue = base[key];
if (styleValue !== undefined) {
for (var _a = 0, runs_1 = runs; _a < runs_1.length; _a++) {
var r = runs_1[_a];
var same = false;
if (Array.isArray(value)) {
same = arraysEqual(r.style[key], value);
}
else if (typeof value === 'object') {
same = objectsEqual(r.style[key], value);
}
else {
same = r.style[key] === value;
}
if (same)
delete r.style[key];
}
}
};
for (var _i = 0, keys_3 = keys; _i < keys_3.length; _i++) {
var key = keys_3[_i];
_loop_1(key);
}
if (runs.every(function (x) { return Object.keys(x.style).length === 0; })) {
runs.length = 0;
}
}
function decodeEngineData(engineData) {
var _a, _b, _c, _d, _e, _f;
// console.log('engineData', require('util').inspect(engineData, false, 99, true));
var engineDict = engineData.EngineDict;
var resourceDict = engineData.ResourceDict;
var fonts = resourceDict.FontSet.map(function (f) { return ({
name: f.Name,
script: f.Script,
type: f.FontType,
synthetic: f.Synthetic,
}); });
var text = engineDict.Editor.Text.replace(/\r/g, '\n');
var removedCharacters = 0;
while (/\n$/.test(text)) {
text = text.substr(0, text.length - 1);
removedCharacters++;
}
var result = {
text: text,
antiAlias: (_a = antialias[engineDict.AntiAlias]) !== null && _a !== void 0 ? _a : 'smooth',
useFractionalGlyphWidths: !!engineDict.UseFractionalGlyphWidths,
superscriptSize: resourceDict.SuperscriptSize,
superscriptPosition: resourceDict.SuperscriptPosition,
subscriptSize: resourceDict.SubscriptSize,
subscriptPosition: resourceDict.SubscriptPosition,
smallCapSize: resourceDict.SmallCapSize,
};
// shape
var photoshop = (_f = (_e = (_d = (_c = (_b = engineDict.Rendered) === null || _b === void 0 ? void 0 : _b.Shapes) === null || _c === void 0 ? void 0 : _c.Children) === null || _d === void 0 ? void 0 : _d[0]) === null || _e === void 0 ? void 0 : _e.Cookie) === null || _f === void 0 ? void 0 : _f.Photoshop;
if (photoshop) {
result.shapeType = photoshop.ShapeType === 1 ? 'box' : 'point';
if (photoshop.PointBase)
result.pointBase = photoshop.PointBase;
if (photoshop.BoxBounds)
result.boxBounds = photoshop.BoxBounds;
}
// paragraph style
// const theNormalParagraphSheet = resourceDict.TheNormalParagraphSheet;
// const paragraphSheetSet = resourceDict.ParagraphSheetSet;
// const paragraphProperties = paragraphSheetSet[theNormalParagraphSheet].Properties;
var paragraphRun = engineData.EngineDict.ParagraphRun;
result.paragraphStyle = {}; // decodeParagraphStyle(paragraphProperties, fonts);
result.paragraphStyleRuns = [];
for (var i = 0; i < paragraphRun.RunArray.length; i++) {
var run_1 = paragraphRun.RunArray[i];
var length_1 = paragraphRun.RunLengthArray[i];
var style = decodeParagraphStyle(run_1.ParagraphSheet.Properties, fonts);
// const adjustments = {
// axis: run.Adjustments.Axis,
// xy: run.Adjustments.XY,
// };
result.paragraphStyleRuns.push({ length: length_1, style: style /*, adjustments*/ });
}
for (var counter = removedCharacters; result.paragraphStyleRuns.length && counter > 0; counter--) {
if (--result.paragraphStyleRuns[result.paragraphStyleRuns.length - 1].length === 0) {
result.paragraphStyleRuns.pop();
}
}
deduplicateValues(result.paragraphStyle, result.paragraphStyleRuns, paragraphStyleKeys);
if (!result.paragraphStyleRuns.length)
delete result.paragraphStyleRuns;
// style
// const theNormalStyleSheet = resourceDict.TheNormalStyleSheet;
// const styleSheetSet = resourceDict.StyleSheetSet;
// const styleSheetData = styleSheetSet[theNormalStyleSheet].StyleSheetData;
var styleRun = engineData.EngineDict.StyleRun;
result.style = {}; // decodeStyle(styleSheetData, fonts);
result.styleRuns = [];
for (var i = 0; i < styleRun.RunArray.length; i++) {
var length_2 = styleRun.RunLengthArray[i];
var style = decodeStyle(styleRun.RunArray[i].StyleSheet.StyleSheetData, fonts);
result.styleRuns.push({ length: length_2, style: style });
}
for (var counter = removedCharacters; result.styleRuns.length && counter > 0; counter--) {
if (--result.styleRuns[result.styleRuns.length - 1].length === 0) {
result.styleRuns.pop();
}
}
deduplicateValues(result.style, result.styleRuns, styleKeys);
if (!result.styleRuns.length)
delete result.styleRuns;
return result;
}
exports.decodeEngineData = decodeEngineData;
function encodeEngineData(data) {
var _a, _b, _c, _d, _e, _f, _g, _h, _j, _k, _l, _m;
var text = "".concat((data.text || '').replace(/\r?\n/g, '\r'), "\r");
var fonts = [
{ name: 'AdobeInvisFont', script: 0, type: 0, synthetic: 0 },
];
var defFont = ((_a = data.style) === null || _a === void 0 ? void 0 : _a.font) || ((_c = (_b = data.styleRuns) === null || _b === void 0 ? void 0 : _b.find(function (s) { return s.style.font; })) === null || _c === void 0 ? void 0 : _c.style.font) || defaultFont;
var paragraphRunArray = [];
var paragraphRunLengthArray = [];
var paragraphRuns = data.paragraphStyleRuns;
if (paragraphRuns && paragraphRuns.length) {
var leftLength_1 = text.length;
for (var _i = 0, paragraphRuns_1 = paragraphRuns; _i < paragraphRuns_1.length; _i++) {
var run_2 = paragraphRuns_1[_i];
var runLength = Math.min(run_2.length, leftLength_1);
leftLength_1 -= runLength;
if (!runLength)
continue; // ignore 0 size runs
// extend last run if it's only for trailing \r
if (leftLength_1 === 1 && run_2 === paragraphRuns[paragraphRuns.length - 1]) {
runLength++;
leftLength_1--;
}
paragraphRunLengthArray.push(runLength);
paragraphRunArray.push({
ParagraphSheet: {
DefaultStyleSheet: 0,
Properties: encodeParagraphStyle(__assign(__assign(__assign({}, defaultParagraphStyle), data.paragraphStyle), run_2.style), fonts),
},
Adjustments: { Axis: [1, 0, 1], XY: [0, 0] },
});
}
if (leftLength_1) {
paragraphRunLengthArray.push(leftLength_1);
paragraphRunArray.push({
ParagraphSheet: {
DefaultStyleSheet: 0,
Properties: encodeParagraphStyle(__assign(__assign({}, defaultParagraphStyle), data.paragraphStyle), fonts),
},
Adjustments: { Axis: [1, 0, 1], XY: [0, 0] },
});
}
}
else {
for (var i = 0, last = 0; i < text.length; i++) {
if (text.charCodeAt(i) === 13) { // \r
paragraphRunLengthArray.push(i - last + 1);
paragraphRunArray.push({
ParagraphSheet: {
DefaultStyleSheet: 0,
Properties: encodeParagraphStyle(__assign(__assign({}, defaultParagraphStyle), data.paragraphStyle), fonts),
},
Adjustments: { Axis: [1, 0, 1], XY: [0, 0] },
});
last = i + 1;
}
}
}
var styleSheetData = encodeStyle(__assign(__assign({}, defaultStyle), { font: defFont }), fonts);
var styleRuns = data.styleRuns || [{ length: text.length, style: data.style || {} }];
var styleRunArray = [];
var styleRunLengthArray = [];
var leftLength = text.length;
for (var _o = 0, styleRuns_1 = styleRuns; _o < styleRuns_1.length; _o++) {
var run_3 = styleRuns_1[_o];
var runLength = Math.min(run_3.length, leftLength);
leftLength -= runLength;
if (!runLength)
continue; // ignore 0 size runs
// extend last run if it's only for trailing \r
if (leftLength === 1 && run_3 === styleRuns[styleRuns.length - 1]) {
runLength++;
leftLength--;
}
styleRunLengthArray.push(runLength);
styleRunArray.push({
StyleSheet: {
StyleSheetData: encodeStyle(__assign(__assign({ kerning: 0, autoKerning: true, fillColor: { r: 0, g: 0, b: 0 } }, data.style), run_3.style), fonts),
},
});
}
// add extra run to the end if existing ones didn't fill it up
if (leftLength && styleRuns.length) {
styleRunLengthArray.push(leftLength);
styleRunArray.push({
StyleSheet: {
StyleSheetData: encodeStyle(__assign({ kerning: 0, autoKerning: true, fillColor: { r: 0, g: 0, b: 0 } }, data.style), fonts),
},
});
}
var gridInfo = __assign(__assign({}, defaultGridInfo), data.gridInfo);
var WritingDirection = data.orientation === 'vertical' ? 2 : 0;
var Procession = data.orientation === 'vertical' ? 1 : 0;
var ShapeType = data.shapeType === 'box' ? 1 : 0;
var Photoshop = {
ShapeType: ShapeType,
};
if (ShapeType === 0) {
Photoshop.PointBase = data.pointBase || [0, 0];
}
else {
Photoshop.BoxBounds = data.boxBounds || [0, 0, 0, 0];
}
// needed for correct order of properties
Photoshop.Base = {
ShapeType: ShapeType,
TransformPoint0: [1, 0],
TransformPoint1: [0, 1],
TransformPoint2: [0, 0],
};
var defaultResources = {
KinsokuSet: [
{
Name: 'PhotoshopKinsokuHard',
NoStart: '、。,.・:;?!ー―’”)〕]}〉》」』】ヽヾゝゞ々ぁぃぅぇぉっゃゅょゎァィゥェォッャュョヮヵヶ゛゜?!)]},.:;℃℉¢%‰',
NoEnd: '‘“(〔[{〈《「『【([{¥$£@§〒#',
Keep: '―‥',
Hanging: '、。.,',
},
{
Name: 'PhotoshopKinsokuSoft',
NoStart: '、。,.・:;?!’”)〕]}〉》」』】ヽヾゝゞ々',
NoEnd: '‘“(〔[{〈《「『【',
Keep: '―‥',
Hanging: '、。.,',
},
],
MojiKumiSet: [
{ InternalName: 'Photoshop6MojiKumiSet1' },
{ InternalName: 'Photoshop6MojiKumiSet2' },
{ InternalName: 'Photoshop6MojiKumiSet3' },
{ InternalName: 'Photoshop6MojiKumiSet4' },
],
TheNormalStyleSheet: 0,
TheNormalParagraphSheet: 0,
ParagraphSheetSet: [
{
Name: 'Normal RGB',
DefaultStyleSheet: 0,
Properties: encodeParagraphStyle(__assign(__assign({}, defaultParagraphStyle), data.paragraphStyle), fonts),
},
],
StyleSheetSet: [
{
Name: 'Normal RGB',
StyleSheetData: styleSheetData,
},
],
FontSet: fonts.map(function (f) { return ({
Name: f.name,
Script: f.script || 0,
FontType: f.type || 0,
Synthetic: f.synthetic || 0,
}); }),
SuperscriptSize: (_d = data.superscriptSize) !== null && _d !== void 0 ? _d : 0.583,
SuperscriptPosition: (_e = data.superscriptPosition) !== null && _e !== void 0 ? _e : 0.333,
SubscriptSize: (_f = data.subscriptSize) !== null && _f !== void 0 ? _f : 0.583,
SubscriptPosition: (_g = data.subscriptPosition) !== null && _g !== void 0 ? _g : 0.333,
SmallCapSize: (_h = data.smallCapSize) !== null && _h !== void 0 ? _h : 0.7,
};
var engineData = {
EngineDict: {
Editor: { Text: text },
ParagraphRun: {
DefaultRunData: {
ParagraphSheet: { DefaultStyleSheet: 0, Properties: {} },
Adjustments: { Axis: [1, 0, 1], XY: [0, 0] },
},
RunArray: paragraphRunArray,
RunLengthArray: paragraphRunLengthArray,
IsJoinable: 1,
},
StyleRun: {
DefaultRunData: { StyleSheet: { StyleSheetData: {} } },
RunArray: styleRunArray,
RunLengthArray: styleRunLengthArray,
IsJoinable: 2,
},
GridInfo: {
GridIsOn: !!gridInfo.isOn,
ShowGrid: !!gridInfo.show,
GridSize: (_j = gridInfo.size) !== null && _j !== void 0 ? _j : 18,
GridLeading: (_k = gridInfo.leading) !== null && _k !== void 0 ? _k : 22,
GridColor: { Type: 1, Values: encodeColor(gridInfo.color) },
GridLeadingFillColor: { Type: 1, Values: encodeColor(gridInfo.color) },
AlignLineHeightToGridFlags: !!gridInfo.alignLineHeightToGridFlags,
},
AntiAlias: antialias.indexOf((_l = data.antiAlias) !== null && _l !== void 0 ? _l : 'sharp'),
UseFractionalGlyphWidths: (_m = data.useFractionalGlyphWidths) !== null && _m !== void 0 ? _m : true,
Rendered: {
Version: 1,
Shapes: {
WritingDirection: WritingDirection,
Children: [
{
ShapeType: ShapeType,
Procession: Procession,
Lines: { WritingDirection: WritingDirection, Children: [] },
Cookie: { Photoshop: Photoshop },
},
],
},
},
},
ResourceDict: __assign({}, defaultResources),
DocumentResources: __assign({}, defaultResources),
};
// console.log('encodeEngineData', require('util').inspect(engineData, false, 99, true));
return engineData;
}
exports.encodeEngineData = encodeEngineData;
},{}],14:[function(require,module,exports){
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.decodeString = exports.encodeString = exports.encodeStringTo = exports.stringLengthInBytes = void 0;
function charLengthInBytes(code) {
if ((code & 0xffffff80) === 0) {
return 1;
}
else if ((code & 0xfffff800) === 0) {
return 2;
}
else if ((code & 0xffff0000) === 0) {
return 3;
}
else {
return 4;
}
}
function stringLengthInBytes(value) {
var result = 0;
for (var i = 0; i < value.length; i++) {
var code = value.charCodeAt(i);
// high surrogate
if (code >= 0xd800 && code <= 0xdbff) {
if ((i + 1) < value.length) {
var extra = value.charCodeAt(i + 1);
// low surrogate
if ((extra & 0xfc00) === 0xdc00) {
i++;
result += charLengthInBytes(((code & 0x3ff) << 10) + (extra & 0x3ff) + 0x10000);
}
}
}
else {
result += charLengthInBytes(code);
}
}
return result;
}
exports.stringLengthInBytes = stringLengthInBytes;
function writeCharacter(buffer, offset, code) {
var length = charLengthInBytes(code);
switch (length) {
case 1:
buffer[offset] = code;
break;
case 2:
buffer[offset] = ((code >> 6) & 0x1f) | 0xc0;
buffer[offset + 1] = (code & 0x3f) | 0x80;
break;
case 3:
buffer[offset] = ((code >> 12) & 0x0f) | 0xe0;
buffer[offset + 1] = ((code >> 6) & 0x3f) | 0x80;
buffer[offset + 2] = (code & 0x3f) | 0x80;
break;
default:
buffer[offset] = ((code >> 18) & 0x07) | 0xf0;
buffer[offset + 1] = ((code >> 12) & 0x3f) | 0x80;
buffer[offset + 2] = ((code >> 6) & 0x3f) | 0x80;
buffer[offset + 3] = (code & 0x3f) | 0x80;
break;
}
return length;
}
function encodeStringTo(buffer, offset, value) {
for (var i = 0; i < value.length; i++) {
var code = value.charCodeAt(i);
// high surrogate
if (code >= 0xd800 && code <= 0xdbff) {
if ((i + 1) < value.length) {
var extra = value.charCodeAt(i + 1);
// low surrogate
if ((extra & 0xfc00) === 0xdc00) {
i++;
var fullCode = ((code & 0x3ff) << 10) + (extra & 0x3ff) + 0x10000;
offset += writeCharacter(buffer, offset, fullCode);
}
}
}
else {
offset += writeCharacter(buffer, offset, code);
}
}
return offset;
}
exports.encodeStringTo = encodeStringTo;
function encodeString(value) {
var buffer = new Uint8Array(stringLengthInBytes(value));
encodeStringTo(buffer, 0, value);
return buffer;
}
exports.encodeString = encodeString;
function continuationByte(buffer, index) {
if (index >= buffer.length) {
throw Error('Invalid byte index');
}
var continuationByte = buffer[index];
if ((continuationByte & 0xC0) === 0x80) {
return continuationByte & 0x3F;
}
else {
throw Error('Invalid continuation byte');
}
}
function decodeString(value) {
var result = '';
for (var i = 0; i < value.length;) {
var byte1 = value[i++];
var code = void 0;
if ((byte1 & 0x80) === 0) {
code = byte1;
}
else if ((byte1 & 0xe0) === 0xc0) {
var byte2 = continuationByte(value, i++);
code = ((byte1 & 0x1f) << 6) | byte2;
if (code < 0x80) {
throw Error('Invalid continuation byte');
}
}
else if ((byte1 & 0xf0) === 0xe0) {
var byte2 = continuationByte(value, i++);
var byte3 = continuationByte(value, i++);
code = ((byte1 & 0x0f) << 12) | (byte2 << 6) | byte3;
if (code < 0x0800) {
throw Error('Invalid continuation byte');
}
if (code >= 0xd800 && code <= 0xdfff) {
throw Error("Lone surrogate U+".concat(code.toString(16).toUpperCase(), " is not a scalar value"));
}
}
else if ((byte1 & 0xf8) === 0xf0) {
var byte2 = continuationByte(value, i++);
var byte3 = continuationByte(value, i++);
var byte4 = continuationByte(value, i++);
code = ((byte1 & 0x0f) << 0x12) | (byte2 << 0x0c) | (byte3 << 0x06) | byte4;
if (code < 0x010000 || code > 0x10ffff) {
throw Error('Invalid continuation byte');
}
}
else {
throw Error('Invalid UTF-8 detected');
}
if (code > 0xffff) {
code -= 0x10000;
result += String.fromCharCode(code >>> 10 & 0x3ff | 0xd800);
code = 0xdc00 | code & 0x3ff;
}
result += String.fromCharCode(code);
}
return result;
}
exports.decodeString = decodeString;
},{}],15:[function(require,module,exports){
'use strict'
exports.byteLength = byteLength
exports.toByteArray = toByteArray
exports.fromByteArray = fromByteArray
var lookup = []
var revLookup = []
var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array
var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
for (var i = 0, len = code.length; i < len; ++i) {
lookup[i] = code[i]
revLookup[code.charCodeAt(i)] = i
}
// Support decoding URL-safe base64 strings, as Node.js does.
// See: https://en.wikipedia.org/wiki/Base64#URL_applications
revLookup['-'.charCodeAt(0)] = 62
revLookup['_'.charCodeAt(0)] = 63
function getLens (b64) {
var len = b64.length
if (len % 4 > 0) {
throw new Error('Invalid string. Length must be a multiple of 4')
}
// Trim off extra bytes after placeholder bytes are found
// See: https://github.com/beatgammit/base64-js/issues/42
var validLen = b64.indexOf('=')
if (validLen === -1) validLen = len
var placeHoldersLen = validLen === len
? 0
: 4 - (validLen % 4)
return [validLen, placeHoldersLen]
}
// base64 is 4/3 + up to two characters of the original data
function byteLength (b64) {
var lens = getLens(b64)
var validLen = lens[0]
var placeHoldersLen = lens[1]
return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}
function _byteLength (b64, validLen, placeHoldersLen) {
return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
}
function toByteArray (b64) {
var tmp
var lens = getLens(b64)
var validLen = lens[0]
var placeHoldersLen = lens[1]
var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen))
var curByte = 0
// if there are placeholders, only get up to the last complete 4 chars
var len = placeHoldersLen > 0
? validLen - 4
: validLen
var i
for (i = 0; i < len; i += 4) {
tmp =
(revLookup[b64.charCodeAt(i)] << 18) |
(revLookup[b64.charCodeAt(i + 1)] << 12) |
(revLookup[b64.charCodeAt(i + 2)] << 6) |
revLookup[b64.charCodeAt(i + 3)]
arr[curByte++] = (tmp >> 16) & 0xFF
arr[curByte++] = (tmp >> 8) & 0xFF
arr[curByte++] = tmp & 0xFF
}
if (placeHoldersLen === 2) {
tmp =
(revLookup[b64.charCodeAt(i)] << 2) |
(revLookup[b64.charCodeAt(i + 1)] >> 4)
arr[curByte++] = tmp & 0xFF
}
if (placeHoldersLen === 1) {
tmp =
(revLookup[b64.charCodeAt(i)] << 10) |
(revLookup[b64.charCodeAt(i + 1)] << 4) |
(revLookup[b64.charCodeAt(i + 2)] >> 2)
arr[curByte++] = (tmp >> 8) & 0xFF
arr[curByte++] = tmp & 0xFF
}
return arr
}
function tripletToBase64 (num) {
return lookup[num >> 18 & 0x3F] +
lookup[num >> 12 & 0x3F] +
lookup[num >> 6 & 0x3F] +
lookup[num & 0x3F]
}
function encodeChunk (uint8, start, end) {
var tmp
var output = []
for (var i = start; i < end; i += 3) {
tmp =
((uint8[i] << 16) & 0xFF0000) +
((uint8[i + 1] << 8) & 0xFF00) +
(uint8[i + 2] & 0xFF)
output.push(tripletToBase64(tmp))
}
return output.join('')
}
function fromByteArray (uint8) {
var tmp
var len = uint8.length
var extraBytes = len % 3 // if we have 1 byte left, pad 2 bytes
var parts = []
var maxChunkLength = 16383 // must be multiple of 3
// go through the array every three bytes, we'll deal with trailing stuff later
for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) {
parts.push(encodeChunk(uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength)))
}
// pad the end with zeros, but make sure to not forget the extra bytes
if (extraBytes === 1) {
tmp = uint8[len - 1]
parts.push(
lookup[tmp >> 2] +
lookup[(tmp << 4) & 0x3F] +
'=='
)
} else if (extraBytes === 2) {
tmp = (uint8[len - 2] << 8) + uint8[len - 1]
parts.push(
lookup[tmp >> 10] +
lookup[(tmp >> 4) & 0x3F] +
lookup[(tmp << 2) & 0x3F] +
'='
)
}
return parts.join('')
}
},{}],16:[function(require,module,exports){
(function (Buffer){(function (){
/*!
* The buffer module from node.js, for the browser.
*
* @author Feross Aboukhadijeh <https://feross.org>
* @license MIT
*/
/* eslint-disable no-proto */
'use strict'
var base64 = require('base64-js')
var ieee754 = require('ieee754')
exports.Buffer = Buffer
exports.SlowBuffer = SlowBuffer
exports.INSPECT_MAX_BYTES = 50
var K_MAX_LENGTH = 0x7fffffff
exports.kMaxLength = K_MAX_LENGTH
/**
* If `Buffer.TYPED_ARRAY_SUPPORT`:
* === true Use Uint8Array implementation (fastest)
* === false Print warning and recommend using `buffer` v4.x which has an Object
* implementation (most compatible, even IE6)
*
* Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+,
* Opera 11.6+, iOS 4.2+.
*
* We report that the browser does not support typed arrays if the are not subclassable
* using __proto__. Firefox 4-29 lacks support for adding new properties to `Uint8Array`
* (See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438). IE 10 lacks support
* for __proto__ and has a buggy typed array implementation.
*/
Buffer.TYPED_ARRAY_SUPPORT = typedArraySupport()
if (!Buffer.TYPED_ARRAY_SUPPORT && typeof console !== 'undefined' &&
typeof console.error === 'function') {
console.error(
'This browser lacks typed array (Uint8Array) support which is required by ' +
'`buffer` v5.x. Use `buffer` v4.x if you require old browser support.'
)
}
function typedArraySupport () {
// Can typed array instances can be augmented?
try {
var arr = new Uint8Array(1)
arr.__proto__ = { __proto__: Uint8Array.prototype, foo: function () { return 42 } }
return arr.foo() === 42
} catch (e) {
return false
}
}
Object.defineProperty(Buffer.prototype, 'parent', {
enumerable: true,
get: function () {
if (!Buffer.isBuffer(this)) return undefined
return this.buffer
}
})
Object.defineProperty(Buffer.prototype, 'offset', {
enumerable: true,
get: function () {
if (!Buffer.isBuffer(this)) return undefined
return this.byteOffset
}
})
function createBuffer (length) {
if (length > K_MAX_LENGTH) {
throw new RangeError('The value "' + length + '" is invalid for option "size"')
}
// Return an augmented `Uint8Array` instance
var buf = new Uint8Array(length)
buf.__proto__ = Buffer.prototype
return buf
}
/**
* The Buffer constructor returns instances of `Uint8Array` that have their
* prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of
* `Uint8Array`, so the returned instances will have all the node `Buffer` methods
* and the `Uint8Array` methods. Square bracket notation works as expected -- it
* returns a single octet.
*
* The `Uint8Array` prototype remains unmodified.
*/
function Buffer (arg, encodingOrOffset, length) {
// Common case.
if (typeof arg === 'number') {
if (typeof encodingOrOffset === 'string') {
throw new TypeError(
'The "string" argument must be of type string. Received type number'
)
}
return allocUnsafe(arg)
}
return from(arg, encodingOrOffset, length)
}
// Fix subarray() in ES2016. See: https://github.com/feross/buffer/pull/97
if (typeof Symbol !== 'undefined' && Symbol.species != null &&
Buffer[Symbol.species] === Buffer) {
Object.defineProperty(Buffer, Symbol.species, {
value: null,
configurable: true,
enumerable: false,
writable: false
})
}
Buffer.poolSize = 8192 // not used by this implementation
function from (value, encodingOrOffset, length) {
if (typeof value === 'string') {
return fromString(value, encodingOrOffset)
}
if (ArrayBuffer.isView(value)) {
return fromArrayLike(value)
}
if (value == null) {
throw TypeError(
'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
'or Array-like Object. Received type ' + (typeof value)
)
}
if (isInstance(value, ArrayBuffer) ||
(value && isInstance(value.buffer, ArrayBuffer))) {
return fromArrayBuffer(value, encodingOrOffset, length)
}
if (typeof value === 'number') {
throw new TypeError(
'The "value" argument must not be of type number. Received type number'
)
}
var valueOf = value.valueOf && value.valueOf()
if (valueOf != null && valueOf !== value) {
return Buffer.from(valueOf, encodingOrOffset, length)
}
var b = fromObject(value)
if (b) return b
if (typeof Symbol !== 'undefined' && Symbol.toPrimitive != null &&
typeof value[Symbol.toPrimitive] === 'function') {
return Buffer.from(
value[Symbol.toPrimitive]('string'), encodingOrOffset, length
)
}
throw new TypeError(
'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
'or Array-like Object. Received type ' + (typeof value)
)
}
/**
* Functionally equivalent to Buffer(arg, encoding) but throws a TypeError
* if value is a number.
* Buffer.from(str[, encoding])
* Buffer.from(array)
* Buffer.from(buffer)
* Buffer.from(arrayBuffer[, byteOffset[, length]])
**/
Buffer.from = function (value, encodingOrOffset, length) {
return from(value, encodingOrOffset, length)
}
// Note: Change prototype *after* Buffer.from is defined to workaround Chrome bug:
// https://github.com/feross/buffer/pull/148
Buffer.prototype.__proto__ = Uint8Array.prototype
Buffer.__proto__ = Uint8Array
function assertSize (size) {
if (typeof size !== 'number') {
throw new TypeError('"size" argument must be of type number')
} else if (size < 0) {
throw new RangeError('The value "' + size + '" is invalid for option "size"')
}
}
function alloc (size, fill, encoding) {
assertSize(size)
if (size <= 0) {
return createBuffer(size)
}
if (fill !== undefined) {
// Only pay attention to encoding if it's a string. This
// prevents accidentally sending in a number that would
// be interpretted as a start offset.
return typeof encoding === 'string'
? createBuffer(size).fill(fill, encoding)
: createBuffer(size).fill(fill)
}
return createBuffer(size)
}
/**
* Creates a new filled Buffer instance.
* alloc(size[, fill[, encoding]])
**/
Buffer.alloc = function (size, fill, encoding) {
return alloc(size, fill, encoding)
}
function allocUnsafe (size) {
assertSize(size)
return createBuffer(size < 0 ? 0 : checked(size) | 0)
}
/**
* Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance.
* */
Buffer.allocUnsafe = function (size) {
return allocUnsafe(size)
}
/**
* Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance.
*/
Buffer.allocUnsafeSlow = function (size) {
return allocUnsafe(size)
}
function fromString (string, encoding) {
if (typeof encoding !== 'string' || encoding === '') {
encoding = 'utf8'
}
if (!Buffer.isEncoding(encoding)) {
throw new TypeError('Unknown encoding: ' + encoding)
}
var length = byteLength(string, encoding) | 0
var buf = createBuffer(length)
var actual = buf.write(string, encoding)
if (actual !== length) {
// Writing a hex string, for example, that contains invalid characters will
// cause everything after the first invalid character to be ignored. (e.g.
// 'abxxcd' will be treated as 'ab')
buf = buf.slice(0, actual)
}
return buf
}
function fromArrayLike (array) {
var length = array.length < 0 ? 0 : checked(array.length) | 0
var buf = createBuffer(length)
for (var i = 0; i < length; i += 1) {
buf[i] = array[i] & 255
}
return buf
}
function fromArrayBuffer (array, byteOffset, length) {
if (byteOffset < 0 || array.byteLength < byteOffset) {
throw new RangeError('"offset" is outside of buffer bounds')
}
if (array.byteLength < byteOffset + (length || 0)) {
throw new RangeError('"length" is outside of buffer bounds')
}
var buf
if (byteOffset === undefined && length === undefined) {
buf = new Uint8Array(array)
} else if (length === undefined) {
buf = new Uint8Array(array, byteOffset)
} else {
buf = new Uint8Array(array, byteOffset, length)
}
// Return an augmented `Uint8Array` instance
buf.__proto__ = Buffer.prototype
return buf
}
function fromObject (obj) {
if (Buffer.isBuffer(obj)) {
var len = checked(obj.length) | 0
var buf = createBuffer(len)
if (buf.length === 0) {
return buf
}
obj.copy(buf, 0, 0, len)
return buf
}
if (obj.length !== undefined) {
if (typeof obj.length !== 'number' || numberIsNaN(obj.length)) {
return createBuffer(0)
}
return fromArrayLike(obj)
}
if (obj.type === 'Buffer' && Array.isArray(obj.data)) {
return fromArrayLike(obj.data)
}
}
function checked (length) {
// Note: cannot use `length < K_MAX_LENGTH` here because that fails when
// length is NaN (which is otherwise coerced to zero.)
if (length >= K_MAX_LENGTH) {
throw new RangeError('Attempt to allocate Buffer larger than maximum ' +
'size: 0x' + K_MAX_LENGTH.toString(16) + ' bytes')
}
return length | 0
}
function SlowBuffer (length) {
if (+length != length) { // eslint-disable-line eqeqeq
length = 0
}
return Buffer.alloc(+length)
}
Buffer.isBuffer = function isBuffer (b) {
return b != null && b._isBuffer === true &&
b !== Buffer.prototype // so Buffer.isBuffer(Buffer.prototype) will be false
}
Buffer.compare = function compare (a, b) {
if (isInstance(a, Uint8Array)) a = Buffer.from(a, a.offset, a.byteLength)
if (isInstance(b, Uint8Array)) b = Buffer.from(b, b.offset, b.byteLength)
if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) {
throw new TypeError(
'The "buf1", "buf2" arguments must be one of type Buffer or Uint8Array'
)
}
if (a === b) return 0
var x = a.length
var y = b.length
for (var i = 0, len = Math.min(x, y); i < len; ++i) {
if (a[i] !== b[i]) {
x = a[i]
y = b[i]
break
}
}
if (x < y) return -1
if (y < x) return 1
return 0
}
Buffer.isEncoding = function isEncoding (encoding) {
switch (String(encoding).toLowerCase()) {
case 'hex':
case 'utf8':
case 'utf-8':
case 'ascii':
case 'latin1':
case 'binary':
case 'base64':
case 'ucs2':
case 'ucs-2':
case 'utf16le':
case 'utf-16le':
return true
default:
return false
}
}
Buffer.concat = function concat (list, length) {
if (!Array.isArray(list)) {
throw new TypeError('"list" argument must be an Array of Buffers')
}
if (list.length === 0) {
return Buffer.alloc(0)
}
var i
if (length === undefined) {
length = 0
for (i = 0; i < list.length; ++i) {
length += list[i].length
}
}
var buffer = Buffer.allocUnsafe(length)
var pos = 0
for (i = 0; i < list.length; ++i) {
var buf = list[i]
if (isInstance(buf, Uint8Array)) {
buf = Buffer.from(buf)
}
if (!Buffer.isBuffer(buf)) {
throw new TypeError('"list" argument must be an Array of Buffers')
}
buf.copy(buffer, pos)
pos += buf.length
}
return buffer
}
function byteLength (string, encoding) {
if (Buffer.isBuffer(string)) {
return string.length
}
if (ArrayBuffer.isView(string) || isInstance(string, ArrayBuffer)) {
return string.byteLength
}
if (typeof string !== 'string') {
throw new TypeError(
'The "string" argument must be one of type string, Buffer, or ArrayBuffer. ' +
'Received type ' + typeof string
)
}
var len = string.length
var mustMatch = (arguments.length > 2 && arguments[2] === true)
if (!mustMatch && len === 0) return 0
// Use a for loop to avoid recursion
var loweredCase = false
for (;;) {
switch (encoding) {
case 'ascii':
case 'latin1':
case 'binary':
return len
case 'utf8':
case 'utf-8':
return utf8ToBytes(string).length
case 'ucs2':
case 'ucs-2':
case 'utf16le':
case 'utf-16le':
return len * 2
case 'hex':
return len >>> 1
case 'base64':
return base64ToBytes(string).length
default:
if (loweredCase) {
return mustMatch ? -1 : utf8ToBytes(string).length // assume utf8
}
encoding = ('' + encoding).toLowerCase()
loweredCase = true
}
}
}
Buffer.byteLength = byteLength
function slowToString (encoding, start, end) {
var loweredCase = false
// No need to verify that "this.length <= MAX_UINT32" since it's a read-only
// property of a typed array.
// This behaves neither like String nor Uint8Array in that we set start/end
// to their upper/lower bounds if the value passed is out of range.
// undefined is handled specially as per ECMA-262 6th Edition,
// Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization.
if (start === undefined || start < 0) {
start = 0
}
// Return early if start > this.length. Done here to prevent potential uint32
// coercion fail below.
if (start > this.length) {
return ''
}
if (end === undefined || end > this.length) {
end = this.length
}
if (end <= 0) {
return ''
}
// Force coersion to uint32. This will also coerce falsey/NaN values to 0.
end >>>= 0
start >>>= 0
if (end <= start) {
return ''
}
if (!encoding) encoding = 'utf8'
while (true) {
switch (encoding) {
case 'hex':
return hexSlice(this, start, end)
case 'utf8':
case 'utf-8':
return utf8Slice(this, start, end)
case 'ascii':
return asciiSlice(this, start, end)
case 'latin1':
case 'binary':
return latin1Slice(this, start, end)
case 'base64':
return base64Slice(this, start, end)
case 'ucs2':
case 'ucs-2':
case 'utf16le':
case 'utf-16le':
return utf16leSlice(this, start, end)
default:
if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
encoding = (encoding + '').toLowerCase()
loweredCase = true
}
}
}
// This property is used by `Buffer.isBuffer` (and the `is-buffer` npm package)
// to detect a Buffer instance. It's not possible to use `instanceof Buffer`
// reliably in a browserify context because there could be multiple different
// copies of the 'buffer' package in use. This method works even for Buffer
// instances that were created from another copy of the `buffer` package.
// See: https://github.com/feross/buffer/issues/154
Buffer.prototype._isBuffer = true
function swap (b, n, m) {
var i = b[n]
b[n] = b[m]
b[m] = i
}
Buffer.prototype.swap16 = function swap16 () {
var len = this.length
if (len % 2 !== 0) {
throw new RangeError('Buffer size must be a multiple of 16-bits')
}
for (var i = 0; i < len; i += 2) {
swap(this, i, i + 1)
}
return this
}
Buffer.prototype.swap32 = function swap32 () {
var len = this.length
if (len % 4 !== 0) {
throw new RangeError('Buffer size must be a multiple of 32-bits')
}
for (var i = 0; i < len; i += 4) {
swap(this, i, i + 3)
swap(this, i + 1, i + 2)
}
return this
}
Buffer.prototype.swap64 = function swap64 () {
var len = this.length
if (len % 8 !== 0) {
throw new RangeError('Buffer size must be a multiple of 64-bits')
}
for (var i = 0; i < len; i += 8) {
swap(this, i, i + 7)
swap(this, i + 1, i + 6)
swap(this, i + 2, i + 5)
swap(this, i + 3, i + 4)
}
return this
}
Buffer.prototype.toString = function toString () {
var length = this.length
if (length === 0) return ''
if (arguments.length === 0) return utf8Slice(this, 0, length)
return slowToString.apply(this, arguments)
}
Buffer.prototype.toLocaleString = Buffer.prototype.toString
Buffer.prototype.equals = function equals (b) {
if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer')
if (this === b) return true
return Buffer.compare(this, b) === 0
}
Buffer.prototype.inspect = function inspect () {
var str = ''
var max = exports.INSPECT_MAX_BYTES
str = this.toString('hex', 0, max).replace(/(.{2})/g, '$1 ').trim()
if (this.length > max) str += ' ... '
return '<Buffer ' + str + '>'
}
Buffer.prototype.compare = function compare (target, start, end, thisStart, thisEnd) {
if (isInstance(target, Uint8Array)) {
target = Buffer.from(target, target.offset, target.byteLength)
}
if (!Buffer.isBuffer(target)) {
throw new TypeError(
'The "target" argument must be one of type Buffer or Uint8Array. ' +
'Received type ' + (typeof target)
)
}
if (start === undefined) {
start = 0
}
if (end === undefined) {
end = target ? target.length : 0
}
if (thisStart === undefined) {
thisStart = 0
}
if (thisEnd === undefined) {
thisEnd = this.length
}
if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) {
throw new RangeError('out of range index')
}
if (thisStart >= thisEnd && start >= end) {
return 0
}
if (thisStart >= thisEnd) {
return -1
}
if (start >= end) {
return 1
}
start >>>= 0
end >>>= 0
thisStart >>>= 0
thisEnd >>>= 0
if (this === target) return 0
var x = thisEnd - thisStart
var y = end - start
var len = Math.min(x, y)
var thisCopy = this.slice(thisStart, thisEnd)
var targetCopy = target.slice(start, end)
for (var i = 0; i < len; ++i) {
if (thisCopy[i] !== targetCopy[i]) {
x = thisCopy[i]
y = targetCopy[i]
break
}
}
if (x < y) return -1
if (y < x) return 1
return 0
}
// Finds either the first index of `val` in `buffer` at offset >= `byteOffset`,
// OR the last index of `val` in `buffer` at offset <= `byteOffset`.
//
// Arguments:
// - buffer - a Buffer to search
// - val - a string, Buffer, or number
// - byteOffset - an index into `buffer`; will be clamped to an int32
// - encoding - an optional encoding, relevant is val is a string
// - dir - true for indexOf, false for lastIndexOf
function bidirectionalIndexOf (buffer, val, byteOffset, encoding, dir) {
// Empty buffer means no match
if (buffer.length === 0) return -1
// Normalize byteOffset
if (typeof byteOffset === 'string') {
encoding = byteOffset
byteOffset = 0
} else if (byteOffset > 0x7fffffff) {
byteOffset = 0x7fffffff
} else if (byteOffset < -0x80000000) {
byteOffset = -0x80000000
}
byteOffset = +byteOffset // Coerce to Number.
if (numberIsNaN(byteOffset)) {
// byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer
byteOffset = dir ? 0 : (buffer.length - 1)
}
// Normalize byteOffset: negative offsets start from the end of the buffer
if (byteOffset < 0) byteOffset = buffer.length + byteOffset
if (byteOffset >= buffer.length) {
if (dir) return -1
else byteOffset = buffer.length - 1
} else if (byteOffset < 0) {
if (dir) byteOffset = 0
else return -1
}
// Normalize val
if (typeof val === 'string') {
val = Buffer.from(val, encoding)
}
// Finally, search either indexOf (if dir is true) or lastIndexOf
if (Buffer.isBuffer(val)) {
// Special case: looking for empty string/buffer always fails
if (val.length === 0) {
return -1
}
return arrayIndexOf(buffer, val, byteOffset, encoding, dir)
} else if (typeof val === 'number') {
val = val & 0xFF // Search for a byte value [0-255]
if (typeof Uint8Array.prototype.indexOf === 'function') {
if (dir) {
return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset)
} else {
return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset)
}
}
return arrayIndexOf(buffer, [ val ], byteOffset, encoding, dir)
}
throw new TypeError('val must be string, number or Buffer')
}
function arrayIndexOf (arr, val, byteOffset, encoding, dir) {
var indexSize = 1
var arrLength = arr.length
var valLength = val.length
if (encoding !== undefined) {
encoding = String(encoding).toLowerCase()
if (encoding === 'ucs2' || encoding === 'ucs-2' ||
encoding === 'utf16le' || encoding === 'utf-16le') {
if (arr.length < 2 || val.length < 2) {
return -1
}
indexSize = 2
arrLength /= 2
valLength /= 2
byteOffset /= 2
}
}
function read (buf, i) {
if (indexSize === 1) {
return buf[i]
} else {
return buf.readUInt16BE(i * indexSize)
}
}
var i
if (dir) {
var foundIndex = -1
for (i = byteOffset; i < arrLength; i++) {
if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) {
if (foundIndex === -1) foundIndex = i
if (i - foundIndex + 1 === valLength) return foundIndex * indexSize
} else {
if (foundIndex !== -1) i -= i - foundIndex
foundIndex = -1
}
}
} else {
if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength
for (i = byteOffset; i >= 0; i--) {
var found = true
for (var j = 0; j < valLength; j++) {
if (read(arr, i + j) !== read(val, j)) {
found = false
break
}
}
if (found) return i
}
}
return -1
}
Buffer.prototype.includes = function includes (val, byteOffset, encoding) {
return this.indexOf(val, byteOffset, encoding) !== -1
}
Buffer.prototype.indexOf = function indexOf (val, byteOffset, encoding) {
return bidirectionalIndexOf(this, val, byteOffset, encoding, true)
}
Buffer.prototype.lastIndexOf = function lastIndexOf (val, byteOffset, encoding) {
return bidirectionalIndexOf(this, val, byteOffset, encoding, false)
}
function hexWrite (buf, string, offset, length) {
offset = Number(offset) || 0
var remaining = buf.length - offset
if (!length) {
length = remaining
} else {
length = Number(length)
if (length > remaining) {
length = remaining
}
}
var strLen = string.length
if (length > strLen / 2) {
length = strLen / 2
}
for (var i = 0; i < length; ++i) {
var parsed = parseInt(string.substr(i * 2, 2), 16)
if (numberIsNaN(parsed)) return i
buf[offset + i] = parsed
}
return i
}
function utf8Write (buf, string, offset, length) {
return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length)
}
function asciiWrite (buf, string, offset, length) {
return blitBuffer(asciiToBytes(string), buf, offset, length)
}
function latin1Write (buf, string, offset, length) {
return asciiWrite(buf, string, offset, length)
}
function base64Write (buf, string, offset, length) {
return blitBuffer(base64ToBytes(string), buf, offset, length)
}
function ucs2Write (buf, string, offset, length) {
return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length)
}
Buffer.prototype.write = function write (string, offset, length, encoding) {
// Buffer#write(string)
if (offset === undefined) {
encoding = 'utf8'
length = this.length
offset = 0
// Buffer#write(string, encoding)
} else if (length === undefined && typeof offset === 'string') {
encoding = offset
length = this.length
offset = 0
// Buffer#write(string, offset[, length][, encoding])
} else if (isFinite(offset)) {
offset = offset >>> 0
if (isFinite(length)) {
length = length >>> 0
if (encoding === undefined) encoding = 'utf8'
} else {
encoding = length
length = undefined
}
} else {
throw new Error(
'Buffer.write(string, encoding, offset[, length]) is no longer supported'
)
}
var remaining = this.length - offset
if (length === undefined || length > remaining) length = remaining
if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) {
throw new RangeError('Attempt to write outside buffer bounds')
}
if (!encoding) encoding = 'utf8'
var loweredCase = false
for (;;) {
switch (encoding) {
case 'hex':
return hexWrite(this, string, offset, length)
case 'utf8':
case 'utf-8':
return utf8Write(this, string, offset, length)
case 'ascii':
return asciiWrite(this, string, offset, length)
case 'latin1':
case 'binary':
return latin1Write(this, string, offset, length)
case 'base64':
// Warning: maxLength not taken into account in base64Write
return base64Write(this, string, offset, length)
case 'ucs2':
case 'ucs-2':
case 'utf16le':
case 'utf-16le':
return ucs2Write(this, string, offset, length)
default:
if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
encoding = ('' + encoding).toLowerCase()
loweredCase = true
}
}
}
Buffer.prototype.toJSON = function toJSON () {
return {
type: 'Buffer',
data: Array.prototype.slice.call(this._arr || this, 0)
}
}
function base64Slice (buf, start, end) {
if (start === 0 && end === buf.length) {
return base64.fromByteArray(buf)
} else {
return base64.fromByteArray(buf.slice(start, end))
}
}
function utf8Slice (buf, start, end) {
end = Math.min(buf.length, end)
var res = []
var i = start
while (i < end) {
var firstByte = buf[i]
var codePoint = null
var bytesPerSequence = (firstByte > 0xEF) ? 4
: (firstByte > 0xDF) ? 3
: (firstByte > 0xBF) ? 2
: 1
if (i + bytesPerSequence <= end) {
var secondByte, thirdByte, fourthByte, tempCodePoint
switch (bytesPerSequence) {
case 1:
if (firstByte < 0x80) {
codePoint = firstByte
}
break
case 2:
secondByte = buf[i + 1]
if ((secondByte & 0xC0) === 0x80) {
tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F)
if (tempCodePoint > 0x7F) {
codePoint = tempCodePoint
}
}
break
case 3:
secondByte = buf[i + 1]
thirdByte = buf[i + 2]
if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) {
tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F)
if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) {
codePoint = tempCodePoint
}
}
break
case 4:
secondByte = buf[i + 1]
thirdByte = buf[i + 2]
fourthByte = buf[i + 3]
if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) {
tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F)
if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) {
codePoint = tempCodePoint
}
}
}
}
if (codePoint === null) {
// we did not generate a valid codePoint so insert a
// replacement char (U+FFFD) and advance only 1 byte
codePoint = 0xFFFD
bytesPerSequence = 1
} else if (codePoint > 0xFFFF) {
// encode to utf16 (surrogate pair dance)
codePoint -= 0x10000
res.push(codePoint >>> 10 & 0x3FF | 0xD800)
codePoint = 0xDC00 | codePoint & 0x3FF
}
res.push(codePoint)
i += bytesPerSequence
}
return decodeCodePointsArray(res)
}
// Based on http://stackoverflow.com/a/22747272/680742, the browser with
// the lowest limit is Chrome, with 0x10000 args.
// We go 1 magnitude less, for safety
var MAX_ARGUMENTS_LENGTH = 0x1000
function decodeCodePointsArray (codePoints) {
var len = codePoints.length
if (len <= MAX_ARGUMENTS_LENGTH) {
return String.fromCharCode.apply(String, codePoints) // avoid extra slice()
}
// Decode in chunks to avoid "call stack size exceeded".
var res = ''
var i = 0
while (i < len) {
res += String.fromCharCode.apply(
String,
codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH)
)
}
return res
}
function asciiSlice (buf, start, end) {
var ret = ''
end = Math.min(buf.length, end)
for (var i = start; i < end; ++i) {
ret += String.fromCharCode(buf[i] & 0x7F)
}
return ret
}
function latin1Slice (buf, start, end) {
var ret = ''
end = Math.min(buf.length, end)
for (var i = start; i < end; ++i) {
ret += String.fromCharCode(buf[i])
}
return ret
}
function hexSlice (buf, start, end) {
var len = buf.length
if (!start || start < 0) start = 0
if (!end || end < 0 || end > len) end = len
var out = ''
for (var i = start; i < end; ++i) {
out += toHex(buf[i])
}
return out
}
function utf16leSlice (buf, start, end) {
var bytes = buf.slice(start, end)
var res = ''
for (var i = 0; i < bytes.length; i += 2) {
res += String.fromCharCode(bytes[i] + (bytes[i + 1] * 256))
}
return res
}
Buffer.prototype.slice = function slice (start, end) {
var len = this.length
start = ~~start
end = end === undefined ? len : ~~end
if (start < 0) {
start += len
if (start < 0) start = 0
} else if (start > len) {
start = len
}
if (end < 0) {
end += len
if (end < 0) end = 0
} else if (end > len) {
end = len
}
if (end < start) end = start
var newBuf = this.subarray(start, end)
// Return an augmented `Uint8Array` instance
newBuf.__proto__ = Buffer.prototype
return newBuf
}
/*
* Need to make sure that buffer isn't trying to write out of bounds.
*/
function checkOffset (offset, ext, length) {
if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint')
if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length')
}
Buffer.prototype.readUIntLE = function readUIntLE (offset, byteLength, noAssert) {
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) checkOffset(offset, byteLength, this.length)
var val = this[offset]
var mul = 1
var i = 0
while (++i < byteLength && (mul *= 0x100)) {
val += this[offset + i] * mul
}
return val
}
Buffer.prototype.readUIntBE = function readUIntBE (offset, byteLength, noAssert) {
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) {
checkOffset(offset, byteLength, this.length)
}
var val = this[offset + --byteLength]
var mul = 1
while (byteLength > 0 && (mul *= 0x100)) {
val += this[offset + --byteLength] * mul
}
return val
}
Buffer.prototype.readUInt8 = function readUInt8 (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 1, this.length)
return this[offset]
}
Buffer.prototype.readUInt16LE = function readUInt16LE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 2, this.length)
return this[offset] | (this[offset + 1] << 8)
}
Buffer.prototype.readUInt16BE = function readUInt16BE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 2, this.length)
return (this[offset] << 8) | this[offset + 1]
}
Buffer.prototype.readUInt32LE = function readUInt32LE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return ((this[offset]) |
(this[offset + 1] << 8) |
(this[offset + 2] << 16)) +
(this[offset + 3] * 0x1000000)
}
Buffer.prototype.readUInt32BE = function readUInt32BE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return (this[offset] * 0x1000000) +
((this[offset + 1] << 16) |
(this[offset + 2] << 8) |
this[offset + 3])
}
Buffer.prototype.readIntLE = function readIntLE (offset, byteLength, noAssert) {
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) checkOffset(offset, byteLength, this.length)
var val = this[offset]
var mul = 1
var i = 0
while (++i < byteLength && (mul *= 0x100)) {
val += this[offset + i] * mul
}
mul *= 0x80
if (val >= mul) val -= Math.pow(2, 8 * byteLength)
return val
}
Buffer.prototype.readIntBE = function readIntBE (offset, byteLength, noAssert) {
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) checkOffset(offset, byteLength, this.length)
var i = byteLength
var mul = 1
var val = this[offset + --i]
while (i > 0 && (mul *= 0x100)) {
val += this[offset + --i] * mul
}
mul *= 0x80
if (val >= mul) val -= Math.pow(2, 8 * byteLength)
return val
}
Buffer.prototype.readInt8 = function readInt8 (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 1, this.length)
if (!(this[offset] & 0x80)) return (this[offset])
return ((0xff - this[offset] + 1) * -1)
}
Buffer.prototype.readInt16LE = function readInt16LE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 2, this.length)
var val = this[offset] | (this[offset + 1] << 8)
return (val & 0x8000) ? val | 0xFFFF0000 : val
}
Buffer.prototype.readInt16BE = function readInt16BE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 2, this.length)
var val = this[offset + 1] | (this[offset] << 8)
return (val & 0x8000) ? val | 0xFFFF0000 : val
}
Buffer.prototype.readInt32LE = function readInt32LE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return (this[offset]) |
(this[offset + 1] << 8) |
(this[offset + 2] << 16) |
(this[offset + 3] << 24)
}
Buffer.prototype.readInt32BE = function readInt32BE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return (this[offset] << 24) |
(this[offset + 1] << 16) |
(this[offset + 2] << 8) |
(this[offset + 3])
}
Buffer.prototype.readFloatLE = function readFloatLE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return ieee754.read(this, offset, true, 23, 4)
}
Buffer.prototype.readFloatBE = function readFloatBE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 4, this.length)
return ieee754.read(this, offset, false, 23, 4)
}
Buffer.prototype.readDoubleLE = function readDoubleLE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 8, this.length)
return ieee754.read(this, offset, true, 52, 8)
}
Buffer.prototype.readDoubleBE = function readDoubleBE (offset, noAssert) {
offset = offset >>> 0
if (!noAssert) checkOffset(offset, 8, this.length)
return ieee754.read(this, offset, false, 52, 8)
}
function checkInt (buf, value, offset, ext, max, min) {
if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance')
if (value > max || value < min) throw new RangeError('"value" argument is out of bounds')
if (offset + ext > buf.length) throw new RangeError('Index out of range')
}
Buffer.prototype.writeUIntLE = function writeUIntLE (value, offset, byteLength, noAssert) {
value = +value
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) {
var maxBytes = Math.pow(2, 8 * byteLength) - 1
checkInt(this, value, offset, byteLength, maxBytes, 0)
}
var mul = 1
var i = 0
this[offset] = value & 0xFF
while (++i < byteLength && (mul *= 0x100)) {
this[offset + i] = (value / mul) & 0xFF
}
return offset + byteLength
}
Buffer.prototype.writeUIntBE = function writeUIntBE (value, offset, byteLength, noAssert) {
value = +value
offset = offset >>> 0
byteLength = byteLength >>> 0
if (!noAssert) {
var maxBytes = Math.pow(2, 8 * byteLength) - 1
checkInt(this, value, offset, byteLength, maxBytes, 0)
}
var i = byteLength - 1
var mul = 1
this[offset + i] = value & 0xFF
while (--i >= 0 && (mul *= 0x100)) {
this[offset + i] = (value / mul) & 0xFF
}
return offset + byteLength
}
Buffer.prototype.writeUInt8 = function writeUInt8 (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0)
this[offset] = (value & 0xff)
return offset + 1
}
Buffer.prototype.writeUInt16LE = function writeUInt16LE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
this[offset] = (value & 0xff)
this[offset + 1] = (value >>> 8)
return offset + 2
}
Buffer.prototype.writeUInt16BE = function writeUInt16BE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
this[offset] = (value >>> 8)
this[offset + 1] = (value & 0xff)
return offset + 2
}
Buffer.prototype.writeUInt32LE = function writeUInt32LE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
this[offset + 3] = (value >>> 24)
this[offset + 2] = (value >>> 16)
this[offset + 1] = (value >>> 8)
this[offset] = (value & 0xff)
return offset + 4
}
Buffer.prototype.writeUInt32BE = function writeUInt32BE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
this[offset] = (value >>> 24)
this[offset + 1] = (value >>> 16)
this[offset + 2] = (value >>> 8)
this[offset + 3] = (value & 0xff)
return offset + 4
}
Buffer.prototype.writeIntLE = function writeIntLE (value, offset, byteLength, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) {
var limit = Math.pow(2, (8 * byteLength) - 1)
checkInt(this, value, offset, byteLength, limit - 1, -limit)
}
var i = 0
var mul = 1
var sub = 0
this[offset] = value & 0xFF
while (++i < byteLength && (mul *= 0x100)) {
if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) {
sub = 1
}
this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
}
return offset + byteLength
}
Buffer.prototype.writeIntBE = function writeIntBE (value, offset, byteLength, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) {
var limit = Math.pow(2, (8 * byteLength) - 1)
checkInt(this, value, offset, byteLength, limit - 1, -limit)
}
var i = byteLength - 1
var mul = 1
var sub = 0
this[offset + i] = value & 0xFF
while (--i >= 0 && (mul *= 0x100)) {
if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) {
sub = 1
}
this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
}
return offset + byteLength
}
Buffer.prototype.writeInt8 = function writeInt8 (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80)
if (value < 0) value = 0xff + value + 1
this[offset] = (value & 0xff)
return offset + 1
}
Buffer.prototype.writeInt16LE = function writeInt16LE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
this[offset] = (value & 0xff)
this[offset + 1] = (value >>> 8)
return offset + 2
}
Buffer.prototype.writeInt16BE = function writeInt16BE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
this[offset] = (value >>> 8)
this[offset + 1] = (value & 0xff)
return offset + 2
}
Buffer.prototype.writeInt32LE = function writeInt32LE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
this[offset] = (value & 0xff)
this[offset + 1] = (value >>> 8)
this[offset + 2] = (value >>> 16)
this[offset + 3] = (value >>> 24)
return offset + 4
}
Buffer.prototype.writeInt32BE = function writeInt32BE (value, offset, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
if (value < 0) value = 0xffffffff + value + 1
this[offset] = (value >>> 24)
this[offset + 1] = (value >>> 16)
this[offset + 2] = (value >>> 8)
this[offset + 3] = (value & 0xff)
return offset + 4
}
function checkIEEE754 (buf, value, offset, ext, max, min) {
if (offset + ext > buf.length) throw new RangeError('Index out of range')
if (offset < 0) throw new RangeError('Index out of range')
}
function writeFloat (buf, value, offset, littleEndian, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) {
checkIEEE754(buf, value, offset, 4, 3.4028234663852886e+38, -3.4028234663852886e+38)
}
ieee754.write(buf, value, offset, littleEndian, 23, 4)
return offset + 4
}
Buffer.prototype.writeFloatLE = function writeFloatLE (value, offset, noAssert) {
return writeFloat(this, value, offset, true, noAssert)
}
Buffer.prototype.writeFloatBE = function writeFloatBE (value, offset, noAssert) {
return writeFloat(this, value, offset, false, noAssert)
}
function writeDouble (buf, value, offset, littleEndian, noAssert) {
value = +value
offset = offset >>> 0
if (!noAssert) {
checkIEEE754(buf, value, offset, 8, 1.7976931348623157E+308, -1.7976931348623157E+308)
}
ieee754.write(buf, value, offset, littleEndian, 52, 8)
return offset + 8
}
Buffer.prototype.writeDoubleLE = function writeDoubleLE (value, offset, noAssert) {
return writeDouble(this, value, offset, true, noAssert)
}
Buffer.prototype.writeDoubleBE = function writeDoubleBE (value, offset, noAssert) {
return writeDouble(this, value, offset, false, noAssert)
}
// copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
Buffer.prototype.copy = function copy (target, targetStart, start, end) {
if (!Buffer.isBuffer(target)) throw new TypeError('argument should be a Buffer')
if (!start) start = 0
if (!end && end !== 0) end = this.length
if (targetStart >= target.length) targetStart = target.length
if (!targetStart) targetStart = 0
if (end > 0 && end < start) end = start
// Copy 0 bytes; we're done
if (end === start) return 0
if (target.length === 0 || this.length === 0) return 0
// Fatal error conditions
if (targetStart < 0) {
throw new RangeError('targetStart out of bounds')
}
if (start < 0 || start >= this.length) throw new RangeError('Index out of range')
if (end < 0) throw new RangeError('sourceEnd out of bounds')
// Are we oob?
if (end > this.length) end = this.length
if (target.length - targetStart < end - start) {
end = target.length - targetStart + start
}
var len = end - start
if (this === target && typeof Uint8Array.prototype.copyWithin === 'function') {
// Use built-in when available, missing from IE11
this.copyWithin(targetStart, start, end)
} else if (this === target && start < targetStart && targetStart < end) {
// descending copy from end
for (var i = len - 1; i >= 0; --i) {
target[i + targetStart] = this[i + start]
}
} else {
Uint8Array.prototype.set.call(
target,
this.subarray(start, end),
targetStart
)
}
return len
}
// Usage:
// buffer.fill(number[, offset[, end]])
// buffer.fill(buffer[, offset[, end]])
// buffer.fill(string[, offset[, end]][, encoding])
Buffer.prototype.fill = function fill (val, start, end, encoding) {
// Handle string cases:
if (typeof val === 'string') {
if (typeof start === 'string') {
encoding = start
start = 0
end = this.length
} else if (typeof end === 'string') {
encoding = end
end = this.length
}
if (encoding !== undefined && typeof encoding !== 'string') {
throw new TypeError('encoding must be a string')
}
if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) {
throw new TypeError('Unknown encoding: ' + encoding)
}
if (val.length === 1) {
var code = val.charCodeAt(0)
if ((encoding === 'utf8' && code < 128) ||
encoding === 'latin1') {
// Fast path: If `val` fits into a single byte, use that numeric value.
val = code
}
}
} else if (typeof val === 'number') {
val = val & 255
}
// Invalid ranges are not set to a default, so can range check early.
if (start < 0 || this.length < start || this.length < end) {
throw new RangeError('Out of range index')
}
if (end <= start) {
return this
}
start = start >>> 0
end = end === undefined ? this.length : end >>> 0
if (!val) val = 0
var i
if (typeof val === 'number') {
for (i = start; i < end; ++i) {
this[i] = val
}
} else {
var bytes = Buffer.isBuffer(val)
? val
: Buffer.from(val, encoding)
var len = bytes.length
if (len === 0) {
throw new TypeError('The value "' + val +
'" is invalid for argument "value"')
}
for (i = 0; i < end - start; ++i) {
this[i + start] = bytes[i % len]
}
}
return this
}
// HELPER FUNCTIONS
// ================
var INVALID_BASE64_RE = /[^+/0-9A-Za-z-_]/g
function base64clean (str) {
// Node takes equal signs as end of the Base64 encoding
str = str.split('=')[0]
// Node strips out invalid characters like \n and \t from the string, base64-js does not
str = str.trim().replace(INVALID_BASE64_RE, '')
// Node converts strings with length < 2 to ''
if (str.length < 2) return ''
// Node allows for non-padded base64 strings (missing trailing ===), base64-js does not
while (str.length % 4 !== 0) {
str = str + '='
}
return str
}
function toHex (n) {
if (n < 16) return '0' + n.toString(16)
return n.toString(16)
}
function utf8ToBytes (string, units) {
units = units || Infinity
var codePoint
var length = string.length
var leadSurrogate = null
var bytes = []
for (var i = 0; i < length; ++i) {
codePoint = string.charCodeAt(i)
// is surrogate component
if (codePoint > 0xD7FF && codePoint < 0xE000) {
// last char was a lead
if (!leadSurrogate) {
// no lead yet
if (codePoint > 0xDBFF) {
// unexpected trail
if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
continue
} else if (i + 1 === length) {
// unpaired lead
if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
continue
}
// valid lead
leadSurrogate = codePoint
continue
}
// 2 leads in a row
if (codePoint < 0xDC00) {
if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
leadSurrogate = codePoint
continue
}
// valid surrogate pair
codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000
} else if (leadSurrogate) {
// valid bmp char, but last char was a lead
if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
}
leadSurrogate = null
// encode utf8
if (codePoint < 0x80) {
if ((units -= 1) < 0) break
bytes.push(codePoint)
} else if (codePoint < 0x800) {
if ((units -= 2) < 0) break
bytes.push(
codePoint >> 0x6 | 0xC0,
codePoint & 0x3F | 0x80
)
} else if (codePoint < 0x10000) {
if ((units -= 3) < 0) break
bytes.push(
codePoint >> 0xC | 0xE0,
codePoint >> 0x6 & 0x3F | 0x80,
codePoint & 0x3F | 0x80
)
} else if (codePoint < 0x110000) {
if ((units -= 4) < 0) break
bytes.push(
codePoint >> 0x12 | 0xF0,
codePoint >> 0xC & 0x3F | 0x80,
codePoint >> 0x6 & 0x3F | 0x80,
codePoint & 0x3F | 0x80
)
} else {
throw new Error('Invalid code point')
}
}
return bytes
}
function asciiToBytes (str) {
var byteArray = []
for (var i = 0; i < str.length; ++i) {
// Node's code seems to be doing this and not & 0x7F..
byteArray.push(str.charCodeAt(i) & 0xFF)
}
return byteArray
}
function utf16leToBytes (str, units) {
var c, hi, lo
var byteArray = []
for (var i = 0; i < str.length; ++i) {
if ((units -= 2) < 0) break
c = str.charCodeAt(i)
hi = c >> 8
lo = c % 256
byteArray.push(lo)
byteArray.push(hi)
}
return byteArray
}
function base64ToBytes (str) {
return base64.toByteArray(base64clean(str))
}
function blitBuffer (src, dst, offset, length) {
for (var i = 0; i < length; ++i) {
if ((i + offset >= dst.length) || (i >= src.length)) break
dst[i + offset] = src[i]
}
return i
}
// ArrayBuffer or Uint8Array objects from other contexts (i.e. iframes) do not pass
// the `instanceof` check but they should be treated as of that type.
// See: https://github.com/feross/buffer/issues/166
function isInstance (obj, type) {
return obj instanceof type ||
(obj != null && obj.constructor != null && obj.constructor.name != null &&
obj.constructor.name === type.name)
}
function numberIsNaN (obj) {
// For IE11 support
return obj !== obj // eslint-disable-line no-self-compare
}
}).call(this)}).call(this,require("buffer").Buffer)
},{"base64-js":15,"buffer":16,"ieee754":17}],17:[function(require,module,exports){
/*! ieee754. BSD-3-Clause License. Feross Aboukhadijeh <https://feross.org/opensource> */
exports.read = function (buffer, offset, isLE, mLen, nBytes) {
var e, m
var eLen = (nBytes * 8) - mLen - 1
var eMax = (1 << eLen) - 1
var eBias = eMax >> 1
var nBits = -7
var i = isLE ? (nBytes - 1) : 0
var d = isLE ? -1 : 1
var s = buffer[offset + i]
i += d
e = s & ((1 << (-nBits)) - 1)
s >>= (-nBits)
nBits += eLen
for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) {}
m = e & ((1 << (-nBits)) - 1)
e >>= (-nBits)
nBits += mLen
for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) {}
if (e === 0) {
e = 1 - eBias
} else if (e === eMax) {
return m ? NaN : ((s ? -1 : 1) * Infinity)
} else {
m = m + Math.pow(2, mLen)
e = e - eBias
}
return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
}
exports.write = function (buffer, value, offset, isLE, mLen, nBytes) {
var e, m, c
var eLen = (nBytes * 8) - mLen - 1
var eMax = (1 << eLen) - 1
var eBias = eMax >> 1
var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0)
var i = isLE ? 0 : (nBytes - 1)
var d = isLE ? 1 : -1
var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0
value = Math.abs(value)
if (isNaN(value) || value === Infinity) {
m = isNaN(value) ? 1 : 0
e = eMax
} else {
e = Math.floor(Math.log(value) / Math.LN2)
if (value * (c = Math.pow(2, -e)) < 1) {
e--
c *= 2
}
if (e + eBias >= 1) {
value += rt / c
} else {
value += rt * Math.pow(2, 1 - eBias)
}
if (value * c >= 2) {
e++
c /= 2
}
if (e + eBias >= eMax) {
m = 0
e = eMax
} else if (e + eBias >= 1) {
m = ((value * c) - 1) * Math.pow(2, mLen)
e = e + eBias
} else {
m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen)
e = 0
}
}
for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {}
e = (e << mLen) | m
eLen += mLen
for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {}
buffer[offset + i - d] |= s * 128
}
},{}],18:[function(require,module,exports){
// Top level file is just a mixin of submodules & constants
'use strict';
const { Deflate, deflate, deflateRaw, gzip } = require('./lib/deflate');
const { Inflate, inflate, inflateRaw, ungzip } = require('./lib/inflate');
const constants = require('./lib/zlib/constants');
module.exports.Deflate = Deflate;
module.exports.deflate = deflate;
module.exports.deflateRaw = deflateRaw;
module.exports.gzip = gzip;
module.exports.Inflate = Inflate;
module.exports.inflate = inflate;
module.exports.inflateRaw = inflateRaw;
module.exports.ungzip = ungzip;
module.exports.constants = constants;
},{"./lib/deflate":19,"./lib/inflate":20,"./lib/zlib/constants":24}],19:[function(require,module,exports){
'use strict';
const zlib_deflate = require('./zlib/deflate');
const utils = require('./utils/common');
const strings = require('./utils/strings');
const msg = require('./zlib/messages');
const ZStream = require('./zlib/zstream');
const toString = Object.prototype.toString;
/* Public constants ==========================================================*/
/* ===========================================================================*/
const {
Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH,
Z_OK, Z_STREAM_END,
Z_DEFAULT_COMPRESSION,
Z_DEFAULT_STRATEGY,
Z_DEFLATED
} = require('./zlib/constants');
/* ===========================================================================*/
/**
* class Deflate
*
* Generic JS-style wrapper for zlib calls. If you don't need
* streaming behaviour - use more simple functions: [[deflate]],
* [[deflateRaw]] and [[gzip]].
**/
/* internal
* Deflate.chunks -> Array
*
* Chunks of output data, if [[Deflate#onData]] not overridden.
**/
/**
* Deflate.result -> Uint8Array
*
* Compressed result, generated by default [[Deflate#onData]]
* and [[Deflate#onEnd]] handlers. Filled after you push last chunk
* (call [[Deflate#push]] with `Z_FINISH` / `true` param).
**/
/**
* Deflate.err -> Number
*
* Error code after deflate finished. 0 (Z_OK) on success.
* You will not need it in real life, because deflate errors
* are possible only on wrong options or bad `onData` / `onEnd`
* custom handlers.
**/
/**
* Deflate.msg -> String
*
* Error message, if [[Deflate.err]] != 0
**/
/**
* new Deflate(options)
* - options (Object): zlib deflate options.
*
* Creates new deflator instance with specified params. Throws exception
* on bad params. Supported options:
*
* - `level`
* - `windowBits`
* - `memLevel`
* - `strategy`
* - `dictionary`
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Additional options, for internal needs:
*
* - `chunkSize` - size of generated data chunks (16K by default)
* - `raw` (Boolean) - do raw deflate
* - `gzip` (Boolean) - create gzip wrapper
* - `header` (Object) - custom header for gzip
* - `text` (Boolean) - true if compressed data believed to be text
* - `time` (Number) - modification time, unix timestamp
* - `os` (Number) - operation system code
* - `extra` (Array) - array of bytes with extra data (max 65536)
* - `name` (String) - file name (binary string)
* - `comment` (String) - comment (binary string)
* - `hcrc` (Boolean) - true if header crc should be added
*
* ##### Example:
*
* ```javascript
* const pako = require('pako')
* , chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
* , chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
*
* const deflate = new pako.Deflate({ level: 3});
*
* deflate.push(chunk1, false);
* deflate.push(chunk2, true); // true -> last chunk
*
* if (deflate.err) { throw new Error(deflate.err); }
*
* console.log(deflate.result);
* ```
**/
function Deflate(options) {
this.options = utils.assign({
level: Z_DEFAULT_COMPRESSION,
method: Z_DEFLATED,
chunkSize: 16384,
windowBits: 15,
memLevel: 8,
strategy: Z_DEFAULT_STRATEGY
}, options || {});
let opt = this.options;
if (opt.raw && (opt.windowBits > 0)) {
opt.windowBits = -opt.windowBits;
}
else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {
opt.windowBits += 16;
}
this.err = 0; // error code, if happens (0 = Z_OK)
this.msg = ''; // error message
this.ended = false; // used to avoid multiple onEnd() calls
this.chunks = []; // chunks of compressed data
this.strm = new ZStream();
this.strm.avail_out = 0;
let status = zlib_deflate.deflateInit2(
this.strm,
opt.level,
opt.method,
opt.windowBits,
opt.memLevel,
opt.strategy
);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
if (opt.header) {
zlib_deflate.deflateSetHeader(this.strm, opt.header);
}
if (opt.dictionary) {
let dict;
// Convert data if needed
if (typeof opt.dictionary === 'string') {
// If we need to compress text, change encoding to utf8.
dict = strings.string2buf(opt.dictionary);
} else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
dict = new Uint8Array(opt.dictionary);
} else {
dict = opt.dictionary;
}
status = zlib_deflate.deflateSetDictionary(this.strm, dict);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
this._dict_set = true;
}
}
/**
* Deflate#push(data[, flush_mode]) -> Boolean
* - data (Uint8Array|ArrayBuffer|String): input data. Strings will be
* converted to utf8 byte sequence.
* - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.
* See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH.
*
* Sends input data to deflate pipe, generating [[Deflate#onData]] calls with
* new compressed chunks. Returns `true` on success. The last data block must
* have `flush_mode` Z_FINISH (or `true`). That will flush internal pending
* buffers and call [[Deflate#onEnd]].
*
* On fail call [[Deflate#onEnd]] with error code and return false.
*
* ##### Example
*
* ```javascript
* push(chunk, false); // push one of data chunks
* ...
* push(chunk, true); // push last chunk
* ```
**/
Deflate.prototype.push = function (data, flush_mode) {
const strm = this.strm;
const chunkSize = this.options.chunkSize;
let status, _flush_mode;
if (this.ended) { return false; }
if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH;
// Convert data if needed
if (typeof data === 'string') {
// If we need to compress text, change encoding to utf8.
strm.input = strings.string2buf(data);
} else if (toString.call(data) === '[object ArrayBuffer]') {
strm.input = new Uint8Array(data);
} else {
strm.input = data;
}
strm.next_in = 0;
strm.avail_in = strm.input.length;
for (;;) {
if (strm.avail_out === 0) {
strm.output = new Uint8Array(chunkSize);
strm.next_out = 0;
strm.avail_out = chunkSize;
}
// Make sure avail_out > 6 to avoid repeating markers
if ((_flush_mode === Z_SYNC_FLUSH || _flush_mode === Z_FULL_FLUSH) && strm.avail_out <= 6) {
this.onData(strm.output.subarray(0, strm.next_out));
strm.avail_out = 0;
continue;
}
status = zlib_deflate.deflate(strm, _flush_mode);
// Ended => flush and finish
if (status === Z_STREAM_END) {
if (strm.next_out > 0) {
this.onData(strm.output.subarray(0, strm.next_out));
}
status = zlib_deflate.deflateEnd(this.strm);
this.onEnd(status);
this.ended = true;
return status === Z_OK;
}
// Flush if out buffer full
if (strm.avail_out === 0) {
this.onData(strm.output);
continue;
}
// Flush if requested and has data
if (_flush_mode > 0 && strm.next_out > 0) {
this.onData(strm.output.subarray(0, strm.next_out));
strm.avail_out = 0;
continue;
}
if (strm.avail_in === 0) break;
}
return true;
};
/**
* Deflate#onData(chunk) -> Void
* - chunk (Uint8Array): output data.
*
* By default, stores data blocks in `chunks[]` property and glue
* those in `onEnd`. Override this handler, if you need another behaviour.
**/
Deflate.prototype.onData = function (chunk) {
this.chunks.push(chunk);
};
/**
* Deflate#onEnd(status) -> Void
* - status (Number): deflate status. 0 (Z_OK) on success,
* other if not.
*
* Called once after you tell deflate that the input stream is
* complete (Z_FINISH). By default - join collected chunks,
* free memory and fill `results` / `err` properties.
**/
Deflate.prototype.onEnd = function (status) {
// On success - join
if (status === Z_OK) {
this.result = utils.flattenChunks(this.chunks);
}
this.chunks = [];
this.err = status;
this.msg = this.strm.msg;
};
/**
* deflate(data[, options]) -> Uint8Array
* - data (Uint8Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* Compress `data` with deflate algorithm and `options`.
*
* Supported options are:
*
* - level
* - windowBits
* - memLevel
* - strategy
* - dictionary
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Sugar (options):
*
* - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
* negative windowBits implicitly.
*
* ##### Example:
*
* ```javascript
* const pako = require('pako')
* const data = new Uint8Array([1,2,3,4,5,6,7,8,9]);
*
* console.log(pako.deflate(data));
* ```
**/
function deflate(input, options) {
const deflator = new Deflate(options);
deflator.push(input, true);
// That will never happens, if you don't cheat with options :)
if (deflator.err) { throw deflator.msg || msg[deflator.err]; }
return deflator.result;
}
/**
* deflateRaw(data[, options]) -> Uint8Array
* - data (Uint8Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* The same as [[deflate]], but creates raw data, without wrapper
* (header and adler32 crc).
**/
function deflateRaw(input, options) {
options = options || {};
options.raw = true;
return deflate(input, options);
}
/**
* gzip(data[, options]) -> Uint8Array
* - data (Uint8Array|String): input data to compress.
* - options (Object): zlib deflate options.
*
* The same as [[deflate]], but create gzip wrapper instead of
* deflate one.
**/
function gzip(input, options) {
options = options || {};
options.gzip = true;
return deflate(input, options);
}
module.exports.Deflate = Deflate;
module.exports.deflate = deflate;
module.exports.deflateRaw = deflateRaw;
module.exports.gzip = gzip;
module.exports.constants = require('./zlib/constants');
},{"./utils/common":21,"./utils/strings":22,"./zlib/constants":24,"./zlib/deflate":26,"./zlib/messages":31,"./zlib/zstream":33}],20:[function(require,module,exports){
'use strict';
const zlib_inflate = require('./zlib/inflate');
const utils = require('./utils/common');
const strings = require('./utils/strings');
const msg = require('./zlib/messages');
const ZStream = require('./zlib/zstream');
const GZheader = require('./zlib/gzheader');
const toString = Object.prototype.toString;
/* Public constants ==========================================================*/
/* ===========================================================================*/
const {
Z_NO_FLUSH, Z_FINISH,
Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR
} = require('./zlib/constants');
/* ===========================================================================*/
/**
* class Inflate
*
* Generic JS-style wrapper for zlib calls. If you don't need
* streaming behaviour - use more simple functions: [[inflate]]
* and [[inflateRaw]].
**/
/* internal
* inflate.chunks -> Array
*
* Chunks of output data, if [[Inflate#onData]] not overridden.
**/
/**
* Inflate.result -> Uint8Array|String
*
* Uncompressed result, generated by default [[Inflate#onData]]
* and [[Inflate#onEnd]] handlers. Filled after you push last chunk
* (call [[Inflate#push]] with `Z_FINISH` / `true` param).
**/
/**
* Inflate.err -> Number
*
* Error code after inflate finished. 0 (Z_OK) on success.
* Should be checked if broken data possible.
**/
/**
* Inflate.msg -> String
*
* Error message, if [[Inflate.err]] != 0
**/
/**
* new Inflate(options)
* - options (Object): zlib inflate options.
*
* Creates new inflator instance with specified params. Throws exception
* on bad params. Supported options:
*
* - `windowBits`
* - `dictionary`
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information on these.
*
* Additional options, for internal needs:
*
* - `chunkSize` - size of generated data chunks (16K by default)
* - `raw` (Boolean) - do raw inflate
* - `to` (String) - if equal to 'string', then result will be converted
* from utf8 to utf16 (javascript) string. When string output requested,
* chunk length can differ from `chunkSize`, depending on content.
*
* By default, when no options set, autodetect deflate/gzip data format via
* wrapper header.
*
* ##### Example:
*
* ```javascript
* const pako = require('pako')
* const chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9])
* const chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]);
*
* const inflate = new pako.Inflate({ level: 3});
*
* inflate.push(chunk1, false);
* inflate.push(chunk2, true); // true -> last chunk
*
* if (inflate.err) { throw new Error(inflate.err); }
*
* console.log(inflate.result);
* ```
**/
function Inflate(options) {
this.options = utils.assign({
chunkSize: 1024 * 64,
windowBits: 15,
to: ''
}, options || {});
const opt = this.options;
// Force window size for `raw` data, if not set directly,
// because we have no header for autodetect.
if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {
opt.windowBits = -opt.windowBits;
if (opt.windowBits === 0) { opt.windowBits = -15; }
}
// If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate
if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&
!(options && options.windowBits)) {
opt.windowBits += 32;
}
// Gzip header has no info about windows size, we can do autodetect only
// for deflate. So, if window size not set, force it to max when gzip possible
if ((opt.windowBits > 15) && (opt.windowBits < 48)) {
// bit 3 (16) -> gzipped data
// bit 4 (32) -> autodetect gzip/deflate
if ((opt.windowBits & 15) === 0) {
opt.windowBits |= 15;
}
}
this.err = 0; // error code, if happens (0 = Z_OK)
this.msg = ''; // error message
this.ended = false; // used to avoid multiple onEnd() calls
this.chunks = []; // chunks of compressed data
this.strm = new ZStream();
this.strm.avail_out = 0;
let status = zlib_inflate.inflateInit2(
this.strm,
opt.windowBits
);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
this.header = new GZheader();
zlib_inflate.inflateGetHeader(this.strm, this.header);
// Setup dictionary
if (opt.dictionary) {
// Convert data if needed
if (typeof opt.dictionary === 'string') {
opt.dictionary = strings.string2buf(opt.dictionary);
} else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {
opt.dictionary = new Uint8Array(opt.dictionary);
}
if (opt.raw) { //In raw mode we need to set the dictionary early
status = zlib_inflate.inflateSetDictionary(this.strm, opt.dictionary);
if (status !== Z_OK) {
throw new Error(msg[status]);
}
}
}
}
/**
* Inflate#push(data[, flush_mode]) -> Boolean
* - data (Uint8Array|ArrayBuffer): input data
* - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE
* flush modes. See constants. Skipped or `false` means Z_NO_FLUSH,
* `true` means Z_FINISH.
*
* Sends input data to inflate pipe, generating [[Inflate#onData]] calls with
* new output chunks. Returns `true` on success. If end of stream detected,
* [[Inflate#onEnd]] will be called.
*
* `flush_mode` is not needed for normal operation, because end of stream
* detected automatically. You may try to use it for advanced things, but
* this functionality was not tested.
*
* On fail call [[Inflate#onEnd]] with error code and return false.
*
* ##### Example
*
* ```javascript
* push(chunk, false); // push one of data chunks
* ...
* push(chunk, true); // push last chunk
* ```
**/
Inflate.prototype.push = function (data, flush_mode) {
const strm = this.strm;
const chunkSize = this.options.chunkSize;
const dictionary = this.options.dictionary;
let status, _flush_mode, last_avail_out;
if (this.ended) return false;
if (flush_mode === ~~flush_mode) _flush_mode = flush_mode;
else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH;
// Convert data if needed
if (toString.call(data) === '[object ArrayBuffer]') {
strm.input = new Uint8Array(data);
} else {
strm.input = data;
}
strm.next_in = 0;
strm.avail_in = strm.input.length;
for (;;) {
if (strm.avail_out === 0) {
strm.output = new Uint8Array(chunkSize);
strm.next_out = 0;
strm.avail_out = chunkSize;
}
status = zlib_inflate.inflate(strm, _flush_mode);
if (status === Z_NEED_DICT && dictionary) {
status = zlib_inflate.inflateSetDictionary(strm, dictionary);
if (status === Z_OK) {
status = zlib_inflate.inflate(strm, _flush_mode);
} else if (status === Z_DATA_ERROR) {
// Replace code with more verbose
status = Z_NEED_DICT;
}
}
// Skip snyc markers if more data follows and not raw mode
while (strm.avail_in > 0 &&
status === Z_STREAM_END &&
strm.state.wrap > 0 &&
data[strm.next_in] !== 0)
{
zlib_inflate.inflateReset(strm);
status = zlib_inflate.inflate(strm, _flush_mode);
}
switch (status) {
case Z_STREAM_ERROR:
case Z_DATA_ERROR:
case Z_NEED_DICT:
case Z_MEM_ERROR:
this.onEnd(status);
this.ended = true;
return false;
}
// Remember real `avail_out` value, because we may patch out buffer content
// to align utf8 strings boundaries.
last_avail_out = strm.avail_out;
if (strm.next_out) {
if (strm.avail_out === 0 || status === Z_STREAM_END) {
if (this.options.to === 'string') {
let next_out_utf8 = strings.utf8border(strm.output, strm.next_out);
let tail = strm.next_out - next_out_utf8;
let utf8str = strings.buf2string(strm.output, next_out_utf8);
// move tail & realign counters
strm.next_out = tail;
strm.avail_out = chunkSize - tail;
if (tail) strm.output.set(strm.output.subarray(next_out_utf8, next_out_utf8 + tail), 0);
this.onData(utf8str);
} else {
this.onData(strm.output.length === strm.next_out ? strm.output : strm.output.subarray(0, strm.next_out));
}
}
}
// Must repeat iteration if out buffer is full
if (status === Z_OK && last_avail_out === 0) continue;
// Finalize if end of stream reached.
if (status === Z_STREAM_END) {
status = zlib_inflate.inflateEnd(this.strm);
this.onEnd(status);
this.ended = true;
return true;
}
if (strm.avail_in === 0) break;
}
return true;
};
/**
* Inflate#onData(chunk) -> Void
* - chunk (Uint8Array|String): output data. When string output requested,
* each chunk will be string.
*
* By default, stores data blocks in `chunks[]` property and glue
* those in `onEnd`. Override this handler, if you need another behaviour.
**/
Inflate.prototype.onData = function (chunk) {
this.chunks.push(chunk);
};
/**
* Inflate#onEnd(status) -> Void
* - status (Number): inflate status. 0 (Z_OK) on success,
* other if not.
*
* Called either after you tell inflate that the input stream is
* complete (Z_FINISH). By default - join collected chunks,
* free memory and fill `results` / `err` properties.
**/
Inflate.prototype.onEnd = function (status) {
// On success - join
if (status === Z_OK) {
if (this.options.to === 'string') {
this.result = this.chunks.join('');
} else {
this.result = utils.flattenChunks(this.chunks);
}
}
this.chunks = [];
this.err = status;
this.msg = this.strm.msg;
};
/**
* inflate(data[, options]) -> Uint8Array|String
* - data (Uint8Array): input data to decompress.
* - options (Object): zlib inflate options.
*
* Decompress `data` with inflate/ungzip and `options`. Autodetect
* format via wrapper header by default. That's why we don't provide
* separate `ungzip` method.
*
* Supported options are:
*
* - windowBits
*
* [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)
* for more information.
*
* Sugar (options):
*
* - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify
* negative windowBits implicitly.
* - `to` (String) - if equal to 'string', then result will be converted
* from utf8 to utf16 (javascript) string. When string output requested,
* chunk length can differ from `chunkSize`, depending on content.
*
*
* ##### Example:
*
* ```javascript
* const pako = require('pako');
* const input = pako.deflate(new Uint8Array([1,2,3,4,5,6,7,8,9]));
* let output;
*
* try {
* output = pako.inflate(input);
* } catch (err) {
* console.log(err);
* }
* ```
**/
function inflate(input, options) {
const inflator = new Inflate(options);
inflator.push(input);
// That will never happens, if you don't cheat with options :)
if (inflator.err) throw inflator.msg || msg[inflator.err];
return inflator.result;
}
/**
* inflateRaw(data[, options]) -> Uint8Array|String
* - data (Uint8Array): input data to decompress.
* - options (Object): zlib inflate options.
*
* The same as [[inflate]], but creates raw data, without wrapper
* (header and adler32 crc).
**/
function inflateRaw(input, options) {
options = options || {};
options.raw = true;
return inflate(input, options);
}
/**
* ungzip(data[, options]) -> Uint8Array|String
* - data (Uint8Array): input data to decompress.
* - options (Object): zlib inflate options.
*
* Just shortcut to [[inflate]], because it autodetects format
* by header.content. Done for convenience.
**/
module.exports.Inflate = Inflate;
module.exports.inflate = inflate;
module.exports.inflateRaw = inflateRaw;
module.exports.ungzip = inflate;
module.exports.constants = require('./zlib/constants');
},{"./utils/common":21,"./utils/strings":22,"./zlib/constants":24,"./zlib/gzheader":27,"./zlib/inflate":29,"./zlib/messages":31,"./zlib/zstream":33}],21:[function(require,module,exports){
'use strict';
const _has = (obj, key) => {
return Object.prototype.hasOwnProperty.call(obj, key);
};
module.exports.assign = function (obj /*from1, from2, from3, ...*/) {
const sources = Array.prototype.slice.call(arguments, 1);
while (sources.length) {
const source = sources.shift();
if (!source) { continue; }
if (typeof source !== 'object') {
throw new TypeError(source + 'must be non-object');
}
for (const p in source) {
if (_has(source, p)) {
obj[p] = source[p];
}
}
}
return obj;
};
// Join array of chunks to single array.
module.exports.flattenChunks = (chunks) => {
// calculate data length
let len = 0;
for (let i = 0, l = chunks.length; i < l; i++) {
len += chunks[i].length;
}
// join chunks
const result = new Uint8Array(len);
for (let i = 0, pos = 0, l = chunks.length; i < l; i++) {
let chunk = chunks[i];
result.set(chunk, pos);
pos += chunk.length;
}
return result;
};
},{}],22:[function(require,module,exports){
// String encode/decode helpers
'use strict';
// Quick check if we can use fast array to bin string conversion
//
// - apply(Array) can fail on Android 2.2
// - apply(Uint8Array) can fail on iOS 5.1 Safari
//
let STR_APPLY_UIA_OK = true;
try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }
// Table with utf8 lengths (calculated by first byte of sequence)
// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,
// because max possible codepoint is 0x10ffff
const _utf8len = new Uint8Array(256);
for (let q = 0; q < 256; q++) {
_utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);
}
_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start
// convert string to array (typed, when possible)
module.exports.string2buf = (str) => {
if (typeof TextEncoder === 'function' && TextEncoder.prototype.encode) {
return new TextEncoder().encode(str);
}
let buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;
// count binary size
for (m_pos = 0; m_pos < str_len; m_pos++) {
c = str.charCodeAt(m_pos);
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
c2 = str.charCodeAt(m_pos + 1);
if ((c2 & 0xfc00) === 0xdc00) {
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
m_pos++;
}
}
buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;
}
// allocate buffer
buf = new Uint8Array(buf_len);
// convert
for (i = 0, m_pos = 0; i < buf_len; m_pos++) {
c = str.charCodeAt(m_pos);
if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {
c2 = str.charCodeAt(m_pos + 1);
if ((c2 & 0xfc00) === 0xdc00) {
c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);
m_pos++;
}
}
if (c < 0x80) {
/* one byte */
buf[i++] = c;
} else if (c < 0x800) {
/* two bytes */
buf[i++] = 0xC0 | (c >>> 6);
buf[i++] = 0x80 | (c & 0x3f);
} else if (c < 0x10000) {
/* three bytes */
buf[i++] = 0xE0 | (c >>> 12);
buf[i++] = 0x80 | (c >>> 6 & 0x3f);
buf[i++] = 0x80 | (c & 0x3f);
} else {
/* four bytes */
buf[i++] = 0xf0 | (c >>> 18);
buf[i++] = 0x80 | (c >>> 12 & 0x3f);
buf[i++] = 0x80 | (c >>> 6 & 0x3f);
buf[i++] = 0x80 | (c & 0x3f);
}
}
return buf;
};
// Helper
const buf2binstring = (buf, len) => {
// On Chrome, the arguments in a function call that are allowed is `65534`.
// If the length of the buffer is smaller than that, we can use this optimization,
// otherwise we will take a slower path.
if (len < 65534) {
if (buf.subarray && STR_APPLY_UIA_OK) {
return String.fromCharCode.apply(null, buf.length === len ? buf : buf.subarray(0, len));
}
}
let result = '';
for (let i = 0; i < len; i++) {
result += String.fromCharCode(buf[i]);
}
return result;
};
// convert array to string
module.exports.buf2string = (buf, max) => {
const len = max || buf.length;
if (typeof TextDecoder === 'function' && TextDecoder.prototype.decode) {
return new TextDecoder().decode(buf.subarray(0, max));
}
let i, out;
// Reserve max possible length (2 words per char)
// NB: by unknown reasons, Array is significantly faster for
// String.fromCharCode.apply than Uint16Array.
const utf16buf = new Array(len * 2);
for (out = 0, i = 0; i < len;) {
let c = buf[i++];
// quick process ascii
if (c < 0x80) { utf16buf[out++] = c; continue; }
let c_len = _utf8len[c];
// skip 5 & 6 byte codes
if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }
// apply mask on first byte
c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;
// join the rest
while (c_len > 1 && i < len) {
c = (c << 6) | (buf[i++] & 0x3f);
c_len--;
}
// terminated by end of string?
if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }
if (c < 0x10000) {
utf16buf[out++] = c;
} else {
c -= 0x10000;
utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);
utf16buf[out++] = 0xdc00 | (c & 0x3ff);
}
}
return buf2binstring(utf16buf, out);
};
// Calculate max possible position in utf8 buffer,
// that will not break sequence. If that's not possible
// - (very small limits) return max size as is.
//
// buf[] - utf8 bytes array
// max - length limit (mandatory);
module.exports.utf8border = (buf, max) => {
max = max || buf.length;
if (max > buf.length) { max = buf.length; }
// go back from last position, until start of sequence found
let pos = max - 1;
while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }
// Very small and broken sequence,
// return max, because we should return something anyway.
if (pos < 0) { return max; }
// If we came to start of buffer - that means buffer is too small,
// return max too.
if (pos === 0) { return max; }
return (pos + _utf8len[buf[pos]] > max) ? pos : max;
};
},{}],23:[function(require,module,exports){
'use strict';
// Note: adler32 takes 12% for level 0 and 2% for level 6.
// It isn't worth it to make additional optimizations as in original.
// Small size is preferable.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
const adler32 = (adler, buf, len, pos) => {
let s1 = (adler & 0xffff) |0,
s2 = ((adler >>> 16) & 0xffff) |0,
n = 0;
while (len !== 0) {
// Set limit ~ twice less than 5552, to keep
// s2 in 31-bits, because we force signed ints.
// in other case %= will fail.
n = len > 2000 ? 2000 : len;
len -= n;
do {
s1 = (s1 + buf[pos++]) |0;
s2 = (s2 + s1) |0;
} while (--n);
s1 %= 65521;
s2 %= 65521;
}
return (s1 | (s2 << 16)) |0;
};
module.exports = adler32;
},{}],24:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
module.exports = {
/* Allowed flush values; see deflate() and inflate() below for details */
Z_NO_FLUSH: 0,
Z_PARTIAL_FLUSH: 1,
Z_SYNC_FLUSH: 2,
Z_FULL_FLUSH: 3,
Z_FINISH: 4,
Z_BLOCK: 5,
Z_TREES: 6,
/* Return codes for the compression/decompression functions. Negative values
* are errors, positive values are used for special but normal events.
*/
Z_OK: 0,
Z_STREAM_END: 1,
Z_NEED_DICT: 2,
Z_ERRNO: -1,
Z_STREAM_ERROR: -2,
Z_DATA_ERROR: -3,
Z_MEM_ERROR: -4,
Z_BUF_ERROR: -5,
//Z_VERSION_ERROR: -6,
/* compression levels */
Z_NO_COMPRESSION: 0,
Z_BEST_SPEED: 1,
Z_BEST_COMPRESSION: 9,
Z_DEFAULT_COMPRESSION: -1,
Z_FILTERED: 1,
Z_HUFFMAN_ONLY: 2,
Z_RLE: 3,
Z_FIXED: 4,
Z_DEFAULT_STRATEGY: 0,
/* Possible values of the data_type field (though see inflate()) */
Z_BINARY: 0,
Z_TEXT: 1,
//Z_ASCII: 1, // = Z_TEXT (deprecated)
Z_UNKNOWN: 2,
/* The deflate compression method */
Z_DEFLATED: 8
//Z_NULL: null // Use -1 or null inline, depending on var type
};
},{}],25:[function(require,module,exports){
'use strict';
// Note: we can't get significant speed boost here.
// So write code to minimize size - no pregenerated tables
// and array tools dependencies.
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// Use ordinary array, since untyped makes no boost here
const makeTable = () => {
let c, table = [];
for (var n = 0; n < 256; n++) {
c = n;
for (var k = 0; k < 8; k++) {
c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));
}
table[n] = c;
}
return table;
};
// Create table on load. Just 255 signed longs. Not a problem.
const crcTable = new Uint32Array(makeTable());
const crc32 = (crc, buf, len, pos) => {
const t = crcTable;
const end = pos + len;
crc ^= -1;
for (let i = pos; i < end; i++) {
crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];
}
return (crc ^ (-1)); // >>> 0;
};
module.exports = crc32;
},{}],26:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = require('./trees');
const adler32 = require('./adler32');
const crc32 = require('./crc32');
const msg = require('./messages');
/* Public constants ==========================================================*/
/* ===========================================================================*/
const {
Z_NO_FLUSH, Z_PARTIAL_FLUSH, Z_FULL_FLUSH, Z_FINISH, Z_BLOCK,
Z_OK, Z_STREAM_END, Z_STREAM_ERROR, Z_DATA_ERROR, Z_BUF_ERROR,
Z_DEFAULT_COMPRESSION,
Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY,
Z_UNKNOWN,
Z_DEFLATED
} = require('./constants');
/*============================================================================*/
const MAX_MEM_LEVEL = 9;
/* Maximum value for memLevel in deflateInit2 */
const MAX_WBITS = 15;
/* 32K LZ77 window */
const DEF_MEM_LEVEL = 8;
const LENGTH_CODES = 29;
/* number of length codes, not counting the special END_BLOCK code */
const LITERALS = 256;
/* number of literal bytes 0..255 */
const L_CODES = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
const D_CODES = 30;
/* number of distance codes */
const BL_CODES = 19;
/* number of codes used to transfer the bit lengths */
const HEAP_SIZE = 2 * L_CODES + 1;
/* maximum heap size */
const MAX_BITS = 15;
/* All codes must not exceed MAX_BITS bits */
const MIN_MATCH = 3;
const MAX_MATCH = 258;
const MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
const PRESET_DICT = 0x20;
const INIT_STATE = 42;
const EXTRA_STATE = 69;
const NAME_STATE = 73;
const COMMENT_STATE = 91;
const HCRC_STATE = 103;
const BUSY_STATE = 113;
const FINISH_STATE = 666;
const BS_NEED_MORE = 1; /* block not completed, need more input or more output */
const BS_BLOCK_DONE = 2; /* block flush performed */
const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */
const BS_FINISH_DONE = 4; /* finish done, accept no more input or output */
const OS_CODE = 0x03; // Unix :) . Don't detect, use this default.
const err = (strm, errorCode) => {
strm.msg = msg[errorCode];
return errorCode;
};
const rank = (f) => {
return ((f) << 1) - ((f) > 4 ? 9 : 0);
};
const zero = (buf) => {
let len = buf.length; while (--len >= 0) { buf[len] = 0; }
};
/* eslint-disable new-cap */
let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask;
// This hash causes less collisions, https://github.com/nodeca/pako/issues/135
// But breaks binary compatibility
//let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask;
let HASH = HASH_ZLIB;
/* =========================================================================
* Flush as much pending output as possible. All deflate() output goes
* through this function so some applications may wish to modify it
* to avoid allocating a large strm->output buffer and copying into it.
* (See also read_buf()).
*/
const flush_pending = (strm) => {
const s = strm.state;
//_tr_flush_bits(s);
let len = s.pending;
if (len > strm.avail_out) {
len = strm.avail_out;
}
if (len === 0) { return; }
strm.output.set(s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out);
strm.next_out += len;
s.pending_out += len;
strm.total_out += len;
strm.avail_out -= len;
s.pending -= len;
if (s.pending === 0) {
s.pending_out = 0;
}
};
const flush_block_only = (s, last) => {
_tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);
s.block_start = s.strstart;
flush_pending(s.strm);
};
const put_byte = (s, b) => {
s.pending_buf[s.pending++] = b;
};
/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
const putShortMSB = (s, b) => {
// put_byte(s, (Byte)(b >> 8));
// put_byte(s, (Byte)(b & 0xff));
s.pending_buf[s.pending++] = (b >>> 8) & 0xff;
s.pending_buf[s.pending++] = b & 0xff;
};
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->input buffer and copying from it.
* (See also flush_pending()).
*/
const read_buf = (strm, buf, start, size) => {
let len = strm.avail_in;
if (len > size) { len = size; }
if (len === 0) { return 0; }
strm.avail_in -= len;
// zmemcpy(buf, strm->next_in, len);
buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start);
if (strm.state.wrap === 1) {
strm.adler = adler32(strm.adler, buf, len, start);
}
else if (strm.state.wrap === 2) {
strm.adler = crc32(strm.adler, buf, len, start);
}
strm.next_in += len;
strm.total_in += len;
return len;
};
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
const longest_match = (s, cur_match) => {
let chain_length = s.max_chain_length; /* max hash chain length */
let scan = s.strstart; /* current string */
let match; /* matched string */
let len; /* length of current match */
let best_len = s.prev_length; /* best match length so far */
let nice_match = s.nice_match; /* stop if match long enough */
const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?
s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;
const _win = s.window; // shortcut
const wmask = s.w_mask;
const prev = s.prev;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
const strend = s.strstart + MAX_MATCH;
let scan_end1 = _win[scan + best_len - 1];
let scan_end = _win[scan + best_len];
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
* It is easy to get rid of this optimization if necessary.
*/
// Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
/* Do not waste too much time if we already have a good match: */
if (s.prev_length >= s.good_match) {
chain_length >>= 2;
}
/* Do not look for matches beyond the end of the input. This is necessary
* to make deflate deterministic.
*/
if (nice_match > s.lookahead) { nice_match = s.lookahead; }
// Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
do {
// Assert(cur_match < s->strstart, "no future");
match = cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2. Note that the checks below
* for insufficient lookahead only occur occasionally for performance
* reasons. Therefore uninitialized memory will be accessed, and
* conditional jumps will be made that depend on those values.
* However the length of the match is limited to the lookahead, so
* the output of deflate is not affected by the uninitialized values.
*/
if (_win[match + best_len] !== scan_end ||
_win[match + best_len - 1] !== scan_end1 ||
_win[match] !== _win[scan] ||
_win[++match] !== _win[scan + 1]) {
continue;
}
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2;
match++;
// Assert(*scan == *match, "match[2]?");
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
/*jshint noempty:false*/
} while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&
scan < strend);
// Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
len = MAX_MATCH - (strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len) {
s.match_start = cur_match;
best_len = len;
if (len >= nice_match) {
break;
}
scan_end1 = _win[scan + best_len - 1];
scan_end = _win[scan + best_len];
}
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);
if (best_len <= s.lookahead) {
return best_len;
}
return s.lookahead;
};
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
const fill_window = (s) => {
const _w_size = s.w_size;
let p, n, m, more, str;
//Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = s.window_size - s.lookahead - s.strstart;
// JS ints have 32 bit, block below not needed
/* Deal with !@#$% 64K limit: */
//if (sizeof(int) <= 2) {
// if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
// more = wsize;
//
// } else if (more == (unsigned)(-1)) {
// /* Very unlikely, but possible on 16 bit machine if
// * strstart == 0 && lookahead == 1 (input done a byte at time)
// */
// more--;
// }
//}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {
s.window.set(s.window.subarray(_w_size, _w_size + _w_size), 0);
s.match_start -= _w_size;
s.strstart -= _w_size;
/* we now have strstart >= MAX_DIST */
s.block_start -= _w_size;
/* Slide the hash table (could be avoided with 32 bit values
at the expense of memory usage). We slide even when level == 0
to keep the hash table consistent if we switch back to level > 0
later. (Using level 0 permanently is not an optimal usage of
zlib, so we don't care about this pathological case.)
*/
n = s.hash_size;
p = n;
do {
m = s.head[--p];
s.head[p] = (m >= _w_size ? m - _w_size : 0);
} while (--n);
n = _w_size;
p = n;
do {
m = s.prev[--p];
s.prev[p] = (m >= _w_size ? m - _w_size : 0);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
} while (--n);
more += _w_size;
}
if (s.strm.avail_in === 0) {
break;
}
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
//Assert(more >= 2, "more < 2");
n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);
s.lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s.lookahead + s.insert >= MIN_MATCH) {
str = s.strstart - s.insert;
s.ins_h = s.window[str];
/* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */
s.ins_h = HASH(s, s.ins_h, s.window[str + 1]);
//#if MIN_MATCH != 3
// Call update_hash() MIN_MATCH-3 more times
//#endif
while (s.insert) {
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
s.prev[str & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = str;
str++;
s.insert--;
if (s.lookahead + s.insert < MIN_MATCH) {
break;
}
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);
/* If the WIN_INIT bytes after the end of the current data have never been
* written, then zero those bytes in order to avoid memory check reports of
* the use of uninitialized (or uninitialised as Julian writes) bytes by
* the longest match routines. Update the high water mark for the next
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
*/
// if (s.high_water < s.window_size) {
// const curr = s.strstart + s.lookahead;
// let init = 0;
//
// if (s.high_water < curr) {
// /* Previous high water mark below current data -- zero WIN_INIT
// * bytes or up to end of window, whichever is less.
// */
// init = s.window_size - curr;
// if (init > WIN_INIT)
// init = WIN_INIT;
// zmemzero(s->window + curr, (unsigned)init);
// s->high_water = curr + init;
// }
// else if (s->high_water < (ulg)curr + WIN_INIT) {
// /* High water mark at or above current data, but below current data
// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
// * to end of window, whichever is less.
// */
// init = (ulg)curr + WIN_INIT - s->high_water;
// if (init > s->window_size - s->high_water)
// init = s->window_size - s->high_water;
// zmemzero(s->window + s->high_water, (unsigned)init);
// s->high_water += init;
// }
// }
//
// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
// "not enough room for search");
};
/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
* This function does not insert new strings in the dictionary since
* uncompressible data is probably not useful. This function is used
* only for the level=0 compression option.
* NOTE: this function should be optimized to avoid extra copying from
* window to pending_buf.
*/
const deflate_stored = (s, flush) => {
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited
* to pending_buf_size, and each stored block has a 5 byte header:
*/
let max_block_size = 0xffff;
if (max_block_size > s.pending_buf_size - 5) {
max_block_size = s.pending_buf_size - 5;
}
/* Copy as much as possible from input to output: */
for (;;) {
/* Fill the window as much as possible: */
if (s.lookahead <= 1) {
//Assert(s->strstart < s->w_size+MAX_DIST(s) ||
// s->block_start >= (long)s->w_size, "slide too late");
// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||
// s.block_start >= s.w_size)) {
// throw new Error("slide too late");
// }
fill_window(s);
if (s.lookahead === 0 && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) {
break;
}
/* flush the current block */
}
//Assert(s->block_start >= 0L, "block gone");
// if (s.block_start < 0) throw new Error("block gone");
s.strstart += s.lookahead;
s.lookahead = 0;
/* Emit a stored block if pending_buf will be full: */
const max_start = s.block_start + max_block_size;
if (s.strstart === 0 || s.strstart >= max_start) {
/* strstart == 0 is possible when wraparound on 16-bit machine */
s.lookahead = s.strstart - max_start;
s.strstart = max_start;
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
/* Flush if we may have to slide, otherwise block_start may become
* negative and the data will be gone:
*/
if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.strstart > s.block_start) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_NEED_MORE;
};
/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
const deflate_fast = (s, flush) => {
let hash_head; /* head of the hash chain */
let bflush; /* set if current block must be flushed */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s.lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) {
break; /* flush the current block */
}
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = 0/*NIL*/;
if (s.lookahead >= MIN_MATCH) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s.match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
}
if (s.match_length >= MIN_MATCH) {
// check_match(s, s.strstart, s.match_start, s.match_length); // for debug only
/*** _tr_tally_dist(s, s.strstart - s.match_start,
s.match_length - MIN_MATCH, bflush); ***/
bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);
s.lookahead -= s.match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {
s.match_length--; /* string at strstart already in table */
do {
s.strstart++;
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--s.match_length !== 0);
s.strstart++;
} else
{
s.strstart += s.match_length;
s.match_length = 0;
s.ins_h = s.window[s.strstart];
/* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */
s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + 1]);
//#if MIN_MATCH != 3
// Call UPDATE_HASH() MIN_MATCH-3 more times
//#endif
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
* matter since it will be recomputed at next deflate call.
*/
}
} else {
/* No match, output a literal byte */
//Tracevv((stderr,"%c", s.window[s.strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = _tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
}
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
};
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
const deflate_slow = (s, flush) => {
let hash_head; /* head of hash chain */
let bflush; /* set if current block must be flushed */
let max_insert;
/* Process the input block. */
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (s.lookahead < MIN_LOOKAHEAD) {
fill_window(s);
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) { break; } /* flush the current block */
}
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
hash_head = 0/*NIL*/;
if (s.lookahead >= MIN_MATCH) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
/* Find the longest match, discarding those <= prev_length.
*/
s.prev_length = s.match_length;
s.prev_match = s.match_start;
s.match_length = MIN_MATCH - 1;
if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&
s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
s.match_length = longest_match(s, hash_head);
/* longest_match() sets match_start */
if (s.match_length <= 5 &&
(s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
s.match_length = MIN_MATCH - 1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {
max_insert = s.strstart + s.lookahead - MIN_MATCH;
/* Do not insert strings in hash table beyond this. */
//check_match(s, s.strstart-1, s.prev_match, s.prev_length);
/***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,
s.prev_length - MIN_MATCH, bflush);***/
bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted. If there is not
* enough lookahead, the last two strings are not inserted in
* the hash table.
*/
s.lookahead -= s.prev_length - 1;
s.prev_length -= 2;
do {
if (++s.strstart <= max_insert) {
/*** INSERT_STRING(s, s.strstart, hash_head); ***/
s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]);
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = s.strstart;
/***/
}
} while (--s.prev_length !== 0);
s.match_available = 0;
s.match_length = MIN_MATCH - 1;
s.strstart++;
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
} else if (s.match_available) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
//Tracevv((stderr,"%c", s->window[s->strstart-1]));
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
if (bflush) {
/*** FLUSH_BLOCK_ONLY(s, 0) ***/
flush_block_only(s, false);
/***/
}
s.strstart++;
s.lookahead--;
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
s.match_available = 1;
s.strstart++;
s.lookahead--;
}
}
//Assert (flush != Z_NO_FLUSH, "no flush?");
if (s.match_available) {
//Tracevv((stderr,"%c", s->window[s->strstart-1]));
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/
bflush = _tr_tally(s, 0, s.window[s.strstart - 1]);
s.match_available = 0;
}
s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
};
/* ===========================================================================
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
* one. Do not maintain a hash table. (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
const deflate_rle = (s, flush) => {
let bflush; /* set if current block must be flushed */
let prev; /* byte at distance one to match */
let scan, strend; /* scan goes up to strend for length of run */
const _win = s.window;
for (;;) {
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the longest run, plus one for the unrolled loop.
*/
if (s.lookahead <= MAX_MATCH) {
fill_window(s);
if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
if (s.lookahead === 0) { break; } /* flush the current block */
}
/* See how many times the previous byte repeats */
s.match_length = 0;
if (s.lookahead >= MIN_MATCH && s.strstart > 0) {
scan = s.strstart - 1;
prev = _win[scan];
if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {
strend = s.strstart + MAX_MATCH;
do {
/*jshint noempty:false*/
} while (prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
prev === _win[++scan] && prev === _win[++scan] &&
scan < strend);
s.match_length = MAX_MATCH - (strend - scan);
if (s.match_length > s.lookahead) {
s.match_length = s.lookahead;
}
}
//Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
}
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
if (s.match_length >= MIN_MATCH) {
//check_match(s, s.strstart, s.strstart - 1, s.match_length);
/*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/
bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH);
s.lookahead -= s.match_length;
s.strstart += s.match_length;
s.match_length = 0;
} else {
/* No match, output a literal byte */
//Tracevv((stderr,"%c", s->window[s->strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = _tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
}
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
};
/* ===========================================================================
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
* (It will be regenerated if this run of deflate switches away from Huffman.)
*/
const deflate_huff = (s, flush) => {
let bflush; /* set if current block must be flushed */
for (;;) {
/* Make sure that we have a literal to write. */
if (s.lookahead === 0) {
fill_window(s);
if (s.lookahead === 0) {
if (flush === Z_NO_FLUSH) {
return BS_NEED_MORE;
}
break; /* flush the current block */
}
}
/* Output a literal byte */
s.match_length = 0;
//Tracevv((stderr,"%c", s->window[s->strstart]));
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/
bflush = _tr_tally(s, 0, s.window[s.strstart]);
s.lookahead--;
s.strstart++;
if (bflush) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
}
s.insert = 0;
if (flush === Z_FINISH) {
/*** FLUSH_BLOCK(s, 1); ***/
flush_block_only(s, true);
if (s.strm.avail_out === 0) {
return BS_FINISH_STARTED;
}
/***/
return BS_FINISH_DONE;
}
if (s.last_lit) {
/*** FLUSH_BLOCK(s, 0); ***/
flush_block_only(s, false);
if (s.strm.avail_out === 0) {
return BS_NEED_MORE;
}
/***/
}
return BS_BLOCK_DONE;
};
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
function Config(good_length, max_lazy, nice_length, max_chain, func) {
this.good_length = good_length;
this.max_lazy = max_lazy;
this.nice_length = nice_length;
this.max_chain = max_chain;
this.func = func;
}
const configuration_table = [
/* good lazy nice chain */
new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */
new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */
new Config(4, 5, 16, 8, deflate_fast), /* 2 */
new Config(4, 6, 32, 32, deflate_fast), /* 3 */
new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */
new Config(8, 16, 32, 32, deflate_slow), /* 5 */
new Config(8, 16, 128, 128, deflate_slow), /* 6 */
new Config(8, 32, 128, 256, deflate_slow), /* 7 */
new Config(32, 128, 258, 1024, deflate_slow), /* 8 */
new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */
];
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
const lm_init = (s) => {
s.window_size = 2 * s.w_size;
/*** CLEAR_HASH(s); ***/
zero(s.head); // Fill with NIL (= 0);
/* Set the default configuration parameters:
*/
s.max_lazy_match = configuration_table[s.level].max_lazy;
s.good_match = configuration_table[s.level].good_length;
s.nice_match = configuration_table[s.level].nice_length;
s.max_chain_length = configuration_table[s.level].max_chain;
s.strstart = 0;
s.block_start = 0;
s.lookahead = 0;
s.insert = 0;
s.match_length = s.prev_length = MIN_MATCH - 1;
s.match_available = 0;
s.ins_h = 0;
};
function DeflateState() {
this.strm = null; /* pointer back to this zlib stream */
this.status = 0; /* as the name implies */
this.pending_buf = null; /* output still pending */
this.pending_buf_size = 0; /* size of pending_buf */
this.pending_out = 0; /* next pending byte to output to the stream */
this.pending = 0; /* nb of bytes in the pending buffer */
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */
this.gzhead = null; /* gzip header information to write */
this.gzindex = 0; /* where in extra, name, or comment */
this.method = Z_DEFLATED; /* can only be DEFLATED */
this.last_flush = -1; /* value of flush param for previous deflate call */
this.w_size = 0; /* LZ77 window size (32K by default) */
this.w_bits = 0; /* log2(w_size) (8..16) */
this.w_mask = 0; /* w_size - 1 */
this.window = null;
/* Sliding window. Input bytes are read into the second half of the window,
* and move to the first half later to keep a dictionary of at least wSize
* bytes. With this organization, matches are limited to a distance of
* wSize-MAX_MATCH bytes, but this ensures that IO is always
* performed with a length multiple of the block size.
*/
this.window_size = 0;
/* Actual size of window: 2*wSize, except when the user input buffer
* is directly used as sliding window.
*/
this.prev = null;
/* Link to older string with same hash index. To limit the size of this
* array to 64K, this link is maintained only for the last 32K strings.
* An index in this array is thus a window index modulo 32K.
*/
this.head = null; /* Heads of the hash chains or NIL. */
this.ins_h = 0; /* hash index of string to be inserted */
this.hash_size = 0; /* number of elements in hash table */
this.hash_bits = 0; /* log2(hash_size) */
this.hash_mask = 0; /* hash_size-1 */
this.hash_shift = 0;
/* Number of bits by which ins_h must be shifted at each input
* step. It must be such that after MIN_MATCH steps, the oldest
* byte no longer takes part in the hash key, that is:
* hash_shift * MIN_MATCH >= hash_bits
*/
this.block_start = 0;
/* Window position at the beginning of the current output block. Gets
* negative when the window is moved backwards.
*/
this.match_length = 0; /* length of best match */
this.prev_match = 0; /* previous match */
this.match_available = 0; /* set if previous match exists */
this.strstart = 0; /* start of string to insert */
this.match_start = 0; /* start of matching string */
this.lookahead = 0; /* number of valid bytes ahead in window */
this.prev_length = 0;
/* Length of the best match at previous step. Matches not greater than this
* are discarded. This is used in the lazy match evaluation.
*/
this.max_chain_length = 0;
/* To speed up deflation, hash chains are never searched beyond this
* length. A higher limit improves compression ratio but degrades the
* speed.
*/
this.max_lazy_match = 0;
/* Attempt to find a better match only when the current match is strictly
* smaller than this value. This mechanism is used only for compression
* levels >= 4.
*/
// That's alias to max_lazy_match, don't use directly
//this.max_insert_length = 0;
/* Insert new strings in the hash table only if the match length is not
* greater than this length. This saves time but degrades compression.
* max_insert_length is used only for compression levels <= 3.
*/
this.level = 0; /* compression level (1..9) */
this.strategy = 0; /* favor or force Huffman coding*/
this.good_match = 0;
/* Use a faster search when the previous match is longer than this */
this.nice_match = 0; /* Stop searching when current match exceeds this */
/* used by trees.c: */
/* Didn't use ct_data typedef below to suppress compiler warning */
// struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
// struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
// struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
// Use flat array of DOUBLE size, with interleaved fata,
// because JS does not support effective
this.dyn_ltree = new Uint16Array(HEAP_SIZE * 2);
this.dyn_dtree = new Uint16Array((2 * D_CODES + 1) * 2);
this.bl_tree = new Uint16Array((2 * BL_CODES + 1) * 2);
zero(this.dyn_ltree);
zero(this.dyn_dtree);
zero(this.bl_tree);
this.l_desc = null; /* desc. for literal tree */
this.d_desc = null; /* desc. for distance tree */
this.bl_desc = null; /* desc. for bit length tree */
//ush bl_count[MAX_BITS+1];
this.bl_count = new Uint16Array(MAX_BITS + 1);
/* number of codes at each bit length for an optimal tree */
//int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
this.heap = new Uint16Array(2 * L_CODES + 1); /* heap used to build the Huffman trees */
zero(this.heap);
this.heap_len = 0; /* number of elements in the heap */
this.heap_max = 0; /* element of largest frequency */
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
* The same heap array is used to build all trees.
*/
this.depth = new Uint16Array(2 * L_CODES + 1); //uch depth[2*L_CODES+1];
zero(this.depth);
/* Depth of each subtree used as tie breaker for trees of equal frequency
*/
this.l_buf = 0; /* buffer index for literals or lengths */
this.lit_bufsize = 0;
/* Size of match buffer for literals/lengths. There are 4 reasons for
* limiting lit_bufsize to 64K:
* - frequencies can be kept in 16 bit counters
* - if compression is not successful for the first block, all input
* data is still in the window so we can still emit a stored block even
* when input comes from standard input. (This can also be done for
* all blocks if lit_bufsize is not greater than 32K.)
* - if compression is not successful for a file smaller than 64K, we can
* even emit a stored file instead of a stored block (saving 5 bytes).
* This is applicable only for zip (not gzip or zlib).
* - creating new Huffman trees less frequently may not provide fast
* adaptation to changes in the input data statistics. (Take for
* example a binary file with poorly compressible code followed by
* a highly compressible string table.) Smaller buffer sizes give
* fast adaptation but have of course the overhead of transmitting
* trees more frequently.
* - I can't count above 4
*/
this.last_lit = 0; /* running index in l_buf */
this.d_buf = 0;
/* Buffer index for distances. To simplify the code, d_buf and l_buf have
* the same number of elements. To use different lengths, an extra flag
* array would be necessary.
*/
this.opt_len = 0; /* bit length of current block with optimal trees */
this.static_len = 0; /* bit length of current block with static trees */
this.matches = 0; /* number of string matches in current block */
this.insert = 0; /* bytes at end of window left to insert */
this.bi_buf = 0;
/* Output buffer. bits are inserted starting at the bottom (least
* significant bits).
*/
this.bi_valid = 0;
/* Number of valid bits in bi_buf. All bits above the last valid bit
* are always zero.
*/
// Used for window memory init. We safely ignore it for JS. That makes
// sense only for pointers and memory check tools.
//this.high_water = 0;
/* High water mark offset in window for initialized bytes -- bytes above
* this are set to zero in order to avoid memory check warnings when
* longest match routines access bytes past the input. This is then
* updated to the new high water mark.
*/
}
const deflateResetKeep = (strm) => {
if (!strm || !strm.state) {
return err(strm, Z_STREAM_ERROR);
}
strm.total_in = strm.total_out = 0;
strm.data_type = Z_UNKNOWN;
const s = strm.state;
s.pending = 0;
s.pending_out = 0;
if (s.wrap < 0) {
s.wrap = -s.wrap;
/* was made negative by deflate(..., Z_FINISH); */
}
s.status = (s.wrap ? INIT_STATE : BUSY_STATE);
strm.adler = (s.wrap === 2) ?
0 // crc32(0, Z_NULL, 0)
:
1; // adler32(0, Z_NULL, 0)
s.last_flush = Z_NO_FLUSH;
_tr_init(s);
return Z_OK;
};
const deflateReset = (strm) => {
const ret = deflateResetKeep(strm);
if (ret === Z_OK) {
lm_init(strm.state);
}
return ret;
};
const deflateSetHeader = (strm, head) => {
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }
strm.state.gzhead = head;
return Z_OK;
};
const deflateInit2 = (strm, level, method, windowBits, memLevel, strategy) => {
if (!strm) { // === Z_NULL
return Z_STREAM_ERROR;
}
let wrap = 1;
if (level === Z_DEFAULT_COMPRESSION) {
level = 6;
}
if (windowBits < 0) { /* suppress zlib wrapper */
wrap = 0;
windowBits = -windowBits;
}
else if (windowBits > 15) {
wrap = 2; /* write gzip wrapper instead */
windowBits -= 16;
}
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
strategy < 0 || strategy > Z_FIXED) {
return err(strm, Z_STREAM_ERROR);
}
if (windowBits === 8) {
windowBits = 9;
}
/* until 256-byte window bug fixed */
const s = new DeflateState();
strm.state = s;
s.strm = strm;
s.wrap = wrap;
s.gzhead = null;
s.w_bits = windowBits;
s.w_size = 1 << s.w_bits;
s.w_mask = s.w_size - 1;
s.hash_bits = memLevel + 7;
s.hash_size = 1 << s.hash_bits;
s.hash_mask = s.hash_size - 1;
s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);
s.window = new Uint8Array(s.w_size * 2);
s.head = new Uint16Array(s.hash_size);
s.prev = new Uint16Array(s.w_size);
// Don't need mem init magic for JS.
//s.high_water = 0; /* nothing written to s->window yet */
s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
s.pending_buf_size = s.lit_bufsize * 4;
//overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
//s->pending_buf = (uchf *) overlay;
s.pending_buf = new Uint8Array(s.pending_buf_size);
// It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)
//s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
s.d_buf = 1 * s.lit_bufsize;
//s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
s.l_buf = (1 + 2) * s.lit_bufsize;
s.level = level;
s.strategy = strategy;
s.method = method;
return deflateReset(strm);
};
const deflateInit = (strm, level) => {
return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);
};
const deflate = (strm, flush) => {
let beg, val; // for gzip header write only
if (!strm || !strm.state ||
flush > Z_BLOCK || flush < 0) {
return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;
}
const s = strm.state;
if (!strm.output ||
(!strm.input && strm.avail_in !== 0) ||
(s.status === FINISH_STATE && flush !== Z_FINISH)) {
return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);
}
s.strm = strm; /* just in case */
const old_flush = s.last_flush;
s.last_flush = flush;
/* Write the header */
if (s.status === INIT_STATE) {
if (s.wrap === 2) { // GZIP header
strm.adler = 0; //crc32(0L, Z_NULL, 0);
put_byte(s, 31);
put_byte(s, 139);
put_byte(s, 8);
if (!s.gzhead) { // s->gzhead == Z_NULL
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, 0);
put_byte(s, s.level === 9 ? 2 :
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
4 : 0));
put_byte(s, OS_CODE);
s.status = BUSY_STATE;
}
else {
put_byte(s, (s.gzhead.text ? 1 : 0) +
(s.gzhead.hcrc ? 2 : 0) +
(!s.gzhead.extra ? 0 : 4) +
(!s.gzhead.name ? 0 : 8) +
(!s.gzhead.comment ? 0 : 16)
);
put_byte(s, s.gzhead.time & 0xff);
put_byte(s, (s.gzhead.time >> 8) & 0xff);
put_byte(s, (s.gzhead.time >> 16) & 0xff);
put_byte(s, (s.gzhead.time >> 24) & 0xff);
put_byte(s, s.level === 9 ? 2 :
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?
4 : 0));
put_byte(s, s.gzhead.os & 0xff);
if (s.gzhead.extra && s.gzhead.extra.length) {
put_byte(s, s.gzhead.extra.length & 0xff);
put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);
}
if (s.gzhead.hcrc) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);
}
s.gzindex = 0;
s.status = EXTRA_STATE;
}
}
else // DEFLATE header
{
let header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;
let level_flags = -1;
if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {
level_flags = 0;
} else if (s.level < 6) {
level_flags = 1;
} else if (s.level === 6) {
level_flags = 2;
} else {
level_flags = 3;
}
header |= (level_flags << 6);
if (s.strstart !== 0) { header |= PRESET_DICT; }
header += 31 - (header % 31);
s.status = BUSY_STATE;
putShortMSB(s, header);
/* Save the adler32 of the preset dictionary: */
if (s.strstart !== 0) {
putShortMSB(s, strm.adler >>> 16);
putShortMSB(s, strm.adler & 0xffff);
}
strm.adler = 1; // adler32(0L, Z_NULL, 0);
}
}
//#ifdef GZIP
if (s.status === EXTRA_STATE) {
if (s.gzhead.extra/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
break;
}
}
put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);
s.gzindex++;
}
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (s.gzindex === s.gzhead.extra.length) {
s.gzindex = 0;
s.status = NAME_STATE;
}
}
else {
s.status = NAME_STATE;
}
}
if (s.status === NAME_STATE) {
if (s.gzhead.name/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
//int val;
do {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
val = 1;
break;
}
}
// JS specific: little magic to add zero terminator to end of string
if (s.gzindex < s.gzhead.name.length) {
val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;
} else {
val = 0;
}
put_byte(s, val);
} while (val !== 0);
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (val === 0) {
s.gzindex = 0;
s.status = COMMENT_STATE;
}
}
else {
s.status = COMMENT_STATE;
}
}
if (s.status === COMMENT_STATE) {
if (s.gzhead.comment/* != Z_NULL*/) {
beg = s.pending; /* start of bytes to update crc */
//int val;
do {
if (s.pending === s.pending_buf_size) {
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
flush_pending(strm);
beg = s.pending;
if (s.pending === s.pending_buf_size) {
val = 1;
break;
}
}
// JS specific: little magic to add zero terminator to end of string
if (s.gzindex < s.gzhead.comment.length) {
val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;
} else {
val = 0;
}
put_byte(s, val);
} while (val !== 0);
if (s.gzhead.hcrc && s.pending > beg) {
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);
}
if (val === 0) {
s.status = HCRC_STATE;
}
}
else {
s.status = HCRC_STATE;
}
}
if (s.status === HCRC_STATE) {
if (s.gzhead.hcrc) {
if (s.pending + 2 > s.pending_buf_size) {
flush_pending(strm);
}
if (s.pending + 2 <= s.pending_buf_size) {
put_byte(s, strm.adler & 0xff);
put_byte(s, (strm.adler >> 8) & 0xff);
strm.adler = 0; //crc32(0L, Z_NULL, 0);
s.status = BUSY_STATE;
}
}
else {
s.status = BUSY_STATE;
}
}
//#endif
/* Flush as much pending output as possible */
if (s.pending !== 0) {
flush_pending(strm);
if (strm.avail_out === 0) {
/* Since avail_out is 0, deflate will be called again with
* more output space, but possibly with both pending and
* avail_in equal to zero. There won't be anything to do,
* but this is not an error situation so make sure we
* return OK instead of BUF_ERROR at next call of deflate:
*/
s.last_flush = -1;
return Z_OK;
}
/* Make sure there is something to do and avoid duplicate consecutive
* flushes. For repeated and useless calls with Z_FINISH, we keep
* returning Z_STREAM_END instead of Z_BUF_ERROR.
*/
} else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&
flush !== Z_FINISH) {
return err(strm, Z_BUF_ERROR);
}
/* User must not provide more input after the first FINISH: */
if (s.status === FINISH_STATE && strm.avail_in !== 0) {
return err(strm, Z_BUF_ERROR);
}
/* Start a new block or continue the current one.
*/
if (strm.avail_in !== 0 || s.lookahead !== 0 ||
(flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {
let bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :
(s.strategy === Z_RLE ? deflate_rle(s, flush) :
configuration_table[s.level].func(s, flush));
if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {
s.status = FINISH_STATE;
}
if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {
if (strm.avail_out === 0) {
s.last_flush = -1;
/* avoid BUF_ERROR next call, see above */
}
return Z_OK;
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
* of deflate should use the same flush parameter to make sure
* that the flush is complete. So we don't have to output an
* empty block here, this will be done at next call. This also
* ensures that for a very small output buffer, we emit at most
* one empty block.
*/
}
if (bstate === BS_BLOCK_DONE) {
if (flush === Z_PARTIAL_FLUSH) {
_tr_align(s);
}
else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
_tr_stored_block(s, 0, 0, false);
/* For a full flush, this empty block will be recognized
* as a special marker by inflate_sync().
*/
if (flush === Z_FULL_FLUSH) {
/*** CLEAR_HASH(s); ***/ /* forget history */
zero(s.head); // Fill with NIL (= 0);
if (s.lookahead === 0) {
s.strstart = 0;
s.block_start = 0;
s.insert = 0;
}
}
}
flush_pending(strm);
if (strm.avail_out === 0) {
s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */
return Z_OK;
}
}
}
//Assert(strm->avail_out > 0, "bug2");
//if (strm.avail_out <= 0) { throw new Error("bug2");}
if (flush !== Z_FINISH) { return Z_OK; }
if (s.wrap <= 0) { return Z_STREAM_END; }
/* Write the trailer */
if (s.wrap === 2) {
put_byte(s, strm.adler & 0xff);
put_byte(s, (strm.adler >> 8) & 0xff);
put_byte(s, (strm.adler >> 16) & 0xff);
put_byte(s, (strm.adler >> 24) & 0xff);
put_byte(s, strm.total_in & 0xff);
put_byte(s, (strm.total_in >> 8) & 0xff);
put_byte(s, (strm.total_in >> 16) & 0xff);
put_byte(s, (strm.total_in >> 24) & 0xff);
}
else
{
putShortMSB(s, strm.adler >>> 16);
putShortMSB(s, strm.adler & 0xffff);
}
flush_pending(strm);
/* If avail_out is zero, the application will call deflate again
* to flush the rest.
*/
if (s.wrap > 0) { s.wrap = -s.wrap; }
/* write the trailer only once! */
return s.pending !== 0 ? Z_OK : Z_STREAM_END;
};
const deflateEnd = (strm) => {
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
return Z_STREAM_ERROR;
}
const status = strm.state.status;
if (status !== INIT_STATE &&
status !== EXTRA_STATE &&
status !== NAME_STATE &&
status !== COMMENT_STATE &&
status !== HCRC_STATE &&
status !== BUSY_STATE &&
status !== FINISH_STATE
) {
return err(strm, Z_STREAM_ERROR);
}
strm.state = null;
return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;
};
/* =========================================================================
* Initializes the compression dictionary from the given byte
* sequence without producing any compressed output.
*/
const deflateSetDictionary = (strm, dictionary) => {
let dictLength = dictionary.length;
if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {
return Z_STREAM_ERROR;
}
const s = strm.state;
const wrap = s.wrap;
if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {
return Z_STREAM_ERROR;
}
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
if (wrap === 1) {
/* adler32(strm->adler, dictionary, dictLength); */
strm.adler = adler32(strm.adler, dictionary, dictLength, 0);
}
s.wrap = 0; /* avoid computing Adler-32 in read_buf */
/* if dictionary would fill window, just replace the history */
if (dictLength >= s.w_size) {
if (wrap === 0) { /* already empty otherwise */
/*** CLEAR_HASH(s); ***/
zero(s.head); // Fill with NIL (= 0);
s.strstart = 0;
s.block_start = 0;
s.insert = 0;
}
/* use the tail */
// dictionary = dictionary.slice(dictLength - s.w_size);
let tmpDict = new Uint8Array(s.w_size);
tmpDict.set(dictionary.subarray(dictLength - s.w_size, dictLength), 0);
dictionary = tmpDict;
dictLength = s.w_size;
}
/* insert dictionary into window and hash */
const avail = strm.avail_in;
const next = strm.next_in;
const input = strm.input;
strm.avail_in = dictLength;
strm.next_in = 0;
strm.input = dictionary;
fill_window(s);
while (s.lookahead >= MIN_MATCH) {
let str = s.strstart;
let n = s.lookahead - (MIN_MATCH - 1);
do {
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */
s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]);
s.prev[str & s.w_mask] = s.head[s.ins_h];
s.head[s.ins_h] = str;
str++;
} while (--n);
s.strstart = str;
s.lookahead = MIN_MATCH - 1;
fill_window(s);
}
s.strstart += s.lookahead;
s.block_start = s.strstart;
s.insert = s.lookahead;
s.lookahead = 0;
s.match_length = s.prev_length = MIN_MATCH - 1;
s.match_available = 0;
strm.next_in = next;
strm.input = input;
strm.avail_in = avail;
s.wrap = wrap;
return Z_OK;
};
module.exports.deflateInit = deflateInit;
module.exports.deflateInit2 = deflateInit2;
module.exports.deflateReset = deflateReset;
module.exports.deflateResetKeep = deflateResetKeep;
module.exports.deflateSetHeader = deflateSetHeader;
module.exports.deflate = deflate;
module.exports.deflateEnd = deflateEnd;
module.exports.deflateSetDictionary = deflateSetDictionary;
module.exports.deflateInfo = 'pako deflate (from Nodeca project)';
/* Not implemented
module.exports.deflateBound = deflateBound;
module.exports.deflateCopy = deflateCopy;
module.exports.deflateParams = deflateParams;
module.exports.deflatePending = deflatePending;
module.exports.deflatePrime = deflatePrime;
module.exports.deflateTune = deflateTune;
*/
},{"./adler32":23,"./constants":24,"./crc32":25,"./messages":31,"./trees":32}],27:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
function GZheader() {
/* true if compressed data believed to be text */
this.text = 0;
/* modification time */
this.time = 0;
/* extra flags (not used when writing a gzip file) */
this.xflags = 0;
/* operating system */
this.os = 0;
/* pointer to extra field or Z_NULL if none */
this.extra = null;
/* extra field length (valid if extra != Z_NULL) */
this.extra_len = 0; // Actually, we don't need it in JS,
// but leave for few code modifications
//
// Setup limits is not necessary because in js we should not preallocate memory
// for inflate use constant limit in 65536 bytes
//
/* space at extra (only when reading header) */
// this.extra_max = 0;
/* pointer to zero-terminated file name or Z_NULL */
this.name = '';
/* space at name (only when reading header) */
// this.name_max = 0;
/* pointer to zero-terminated comment or Z_NULL */
this.comment = '';
/* space at comment (only when reading header) */
// this.comm_max = 0;
/* true if there was or will be a header crc */
this.hcrc = 0;
/* true when done reading gzip header (not used when writing a gzip file) */
this.done = false;
}
module.exports = GZheader;
},{}],28:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
// See state defs from inflate.js
const BAD = 30; /* got a data error -- remain here until reset */
const TYPE = 12; /* i: waiting for type bits, including last-flag bit */
/*
Decode literal, length, and distance codes and write out the resulting
literal and match bytes until either not enough input or output is
available, an end-of-block is encountered, or a data error is encountered.
When large enough input and output buffers are supplied to inflate(), for
example, a 16K input buffer and a 64K output buffer, more than 95% of the
inflate execution time is spent in this routine.
Entry assumptions:
state.mode === LEN
strm.avail_in >= 6
strm.avail_out >= 258
start >= strm.avail_out
state.bits < 8
On return, state.mode is one of:
LEN -- ran out of enough output space or enough available input
TYPE -- reached end of block code, inflate() to interpret next block
BAD -- error in block data
Notes:
- The maximum input bits used by a length/distance pair is 15 bits for the
length code, 5 bits for the length extra, 15 bits for the distance code,
and 13 bits for the distance extra. This totals 48 bits, or six bytes.
Therefore if strm.avail_in >= 6, then there is enough input to avoid
checking for available input while decoding.
- The maximum bytes that a single length/distance pair can output is 258
bytes, which is the maximum length that can be coded. inflate_fast()
requires strm.avail_out >= 258 for each loop to avoid checking for
output space.
*/
module.exports = function inflate_fast(strm, start) {
let _in; /* local strm.input */
let last; /* have enough input while in < last */
let _out; /* local strm.output */
let beg; /* inflate()'s initial strm.output */
let end; /* while out < end, enough space available */
//#ifdef INFLATE_STRICT
let dmax; /* maximum distance from zlib header */
//#endif
let wsize; /* window size or zero if not using window */
let whave; /* valid bytes in the window */
let wnext; /* window write index */
// Use `s_window` instead `window`, avoid conflict with instrumentation tools
let s_window; /* allocated sliding window, if wsize != 0 */
let hold; /* local strm.hold */
let bits; /* local strm.bits */
let lcode; /* local strm.lencode */
let dcode; /* local strm.distcode */
let lmask; /* mask for first level of length codes */
let dmask; /* mask for first level of distance codes */
let here; /* retrieved table entry */
let op; /* code bits, operation, extra bits, or */
/* window position, window bytes to copy */
let len; /* match length, unused bytes */
let dist; /* match distance */
let from; /* where to copy match from */
let from_source;
let input, output; // JS specific, because we have no pointers
/* copy state to local variables */
const state = strm.state;
//here = state.here;
_in = strm.next_in;
input = strm.input;
last = _in + (strm.avail_in - 5);
_out = strm.next_out;
output = strm.output;
beg = _out - (start - strm.avail_out);
end = _out + (strm.avail_out - 257);
//#ifdef INFLATE_STRICT
dmax = state.dmax;
//#endif
wsize = state.wsize;
whave = state.whave;
wnext = state.wnext;
s_window = state.window;
hold = state.hold;
bits = state.bits;
lcode = state.lencode;
dcode = state.distcode;
lmask = (1 << state.lenbits) - 1;
dmask = (1 << state.distbits) - 1;
/* decode literals and length/distances until end-of-block or not enough
input data or output space */
top:
do {
if (bits < 15) {
hold += input[_in++] << bits;
bits += 8;
hold += input[_in++] << bits;
bits += 8;
}
here = lcode[hold & lmask];
dolen:
for (;;) { // Goto emulation
op = here >>> 24/*here.bits*/;
hold >>>= op;
bits -= op;
op = (here >>> 16) & 0xff/*here.op*/;
if (op === 0) { /* literal */
//Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
// "inflate: literal '%c'\n" :
// "inflate: literal 0x%02x\n", here.val));
output[_out++] = here & 0xffff/*here.val*/;
}
else if (op & 16) { /* length base */
len = here & 0xffff/*here.val*/;
op &= 15; /* number of extra bits */
if (op) {
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
}
len += hold & ((1 << op) - 1);
hold >>>= op;
bits -= op;
}
//Tracevv((stderr, "inflate: length %u\n", len));
if (bits < 15) {
hold += input[_in++] << bits;
bits += 8;
hold += input[_in++] << bits;
bits += 8;
}
here = dcode[hold & dmask];
dodist:
for (;;) { // goto emulation
op = here >>> 24/*here.bits*/;
hold >>>= op;
bits -= op;
op = (here >>> 16) & 0xff/*here.op*/;
if (op & 16) { /* distance base */
dist = here & 0xffff/*here.val*/;
op &= 15; /* number of extra bits */
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
if (bits < op) {
hold += input[_in++] << bits;
bits += 8;
}
}
dist += hold & ((1 << op) - 1);
//#ifdef INFLATE_STRICT
if (dist > dmax) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break top;
}
//#endif
hold >>>= op;
bits -= op;
//Tracevv((stderr, "inflate: distance %u\n", dist));
op = _out - beg; /* max distance in output */
if (dist > op) { /* see if copy from window */
op = dist - op; /* distance back in window */
if (op > whave) {
if (state.sane) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break top;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
// if (len <= op - whave) {
// do {
// output[_out++] = 0;
// } while (--len);
// continue top;
// }
// len -= op - whave;
// do {
// output[_out++] = 0;
// } while (--op > whave);
// if (op === 0) {
// from = _out - dist;
// do {
// output[_out++] = output[from++];
// } while (--len);
// continue top;
// }
//#endif
}
from = 0; // window index
from_source = s_window;
if (wnext === 0) { /* very common case */
from += wsize - op;
if (op < len) { /* some from window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
else if (wnext < op) { /* wrap around window */
from += wsize + wnext - op;
op -= wnext;
if (op < len) { /* some from end of window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = 0;
if (wnext < len) { /* some from start of window */
op = wnext;
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
}
else { /* contiguous in window */
from += wnext - op;
if (op < len) { /* some from window */
len -= op;
do {
output[_out++] = s_window[from++];
} while (--op);
from = _out - dist; /* rest from output */
from_source = output;
}
}
while (len > 2) {
output[_out++] = from_source[from++];
output[_out++] = from_source[from++];
output[_out++] = from_source[from++];
len -= 3;
}
if (len) {
output[_out++] = from_source[from++];
if (len > 1) {
output[_out++] = from_source[from++];
}
}
}
else {
from = _out - dist; /* copy direct from output */
do { /* minimum length is three */
output[_out++] = output[from++];
output[_out++] = output[from++];
output[_out++] = output[from++];
len -= 3;
} while (len > 2);
if (len) {
output[_out++] = output[from++];
if (len > 1) {
output[_out++] = output[from++];
}
}
}
}
else if ((op & 64) === 0) { /* 2nd level distance code */
here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
continue dodist;
}
else {
strm.msg = 'invalid distance code';
state.mode = BAD;
break top;
}
break; // need to emulate goto via "continue"
}
}
else if ((op & 64) === 0) { /* 2nd level length code */
here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];
continue dolen;
}
else if (op & 32) { /* end-of-block */
//Tracevv((stderr, "inflate: end of block\n"));
state.mode = TYPE;
break top;
}
else {
strm.msg = 'invalid literal/length code';
state.mode = BAD;
break top;
}
break; // need to emulate goto via "continue"
}
} while (_in < last && _out < end);
/* return unused bytes (on entry, bits < 8, so in won't go too far back) */
len = bits >> 3;
_in -= len;
bits -= len << 3;
hold &= (1 << bits) - 1;
/* update state and return */
strm.next_in = _in;
strm.next_out = _out;
strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));
strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));
state.hold = hold;
state.bits = bits;
return;
};
},{}],29:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
const adler32 = require('./adler32');
const crc32 = require('./crc32');
const inflate_fast = require('./inffast');
const inflate_table = require('./inftrees');
const CODES = 0;
const LENS = 1;
const DISTS = 2;
/* Public constants ==========================================================*/
/* ===========================================================================*/
const {
Z_FINISH, Z_BLOCK, Z_TREES,
Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR, Z_BUF_ERROR,
Z_DEFLATED
} = require('./constants');
/* STATES ====================================================================*/
/* ===========================================================================*/
const HEAD = 1; /* i: waiting for magic header */
const FLAGS = 2; /* i: waiting for method and flags (gzip) */
const TIME = 3; /* i: waiting for modification time (gzip) */
const OS = 4; /* i: waiting for extra flags and operating system (gzip) */
const EXLEN = 5; /* i: waiting for extra length (gzip) */
const EXTRA = 6; /* i: waiting for extra bytes (gzip) */
const NAME = 7; /* i: waiting for end of file name (gzip) */
const COMMENT = 8; /* i: waiting for end of comment (gzip) */
const HCRC = 9; /* i: waiting for header crc (gzip) */
const DICTID = 10; /* i: waiting for dictionary check value */
const DICT = 11; /* waiting for inflateSetDictionary() call */
const TYPE = 12; /* i: waiting for type bits, including last-flag bit */
const TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */
const STORED = 14; /* i: waiting for stored size (length and complement) */
const COPY_ = 15; /* i/o: same as COPY below, but only first time in */
const COPY = 16; /* i/o: waiting for input or output to copy stored block */
const TABLE = 17; /* i: waiting for dynamic block table lengths */
const LENLENS = 18; /* i: waiting for code length code lengths */
const CODELENS = 19; /* i: waiting for length/lit and distance code lengths */
const LEN_ = 20; /* i: same as LEN below, but only first time in */
const LEN = 21; /* i: waiting for length/lit/eob code */
const LENEXT = 22; /* i: waiting for length extra bits */
const DIST = 23; /* i: waiting for distance code */
const DISTEXT = 24; /* i: waiting for distance extra bits */
const MATCH = 25; /* o: waiting for output space to copy string */
const LIT = 26; /* o: waiting for output space to write literal */
const CHECK = 27; /* i: waiting for 32-bit check value */
const LENGTH = 28; /* i: waiting for 32-bit length (gzip) */
const DONE = 29; /* finished check, done -- remain here until reset */
const BAD = 30; /* got a data error -- remain here until reset */
const MEM = 31; /* got an inflate() memory error -- remain here until reset */
const SYNC = 32; /* looking for synchronization bytes to restart inflate() */
/* ===========================================================================*/
const ENOUGH_LENS = 852;
const ENOUGH_DISTS = 592;
//const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
const MAX_WBITS = 15;
/* 32K LZ77 window */
const DEF_WBITS = MAX_WBITS;
const zswap32 = (q) => {
return (((q >>> 24) & 0xff) +
((q >>> 8) & 0xff00) +
((q & 0xff00) << 8) +
((q & 0xff) << 24));
};
function InflateState() {
this.mode = 0; /* current inflate mode */
this.last = false; /* true if processing last block */
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */
this.havedict = false; /* true if dictionary provided */
this.flags = 0; /* gzip header method and flags (0 if zlib) */
this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */
this.check = 0; /* protected copy of check value */
this.total = 0; /* protected copy of output count */
// TODO: may be {}
this.head = null; /* where to save gzip header information */
/* sliding window */
this.wbits = 0; /* log base 2 of requested window size */
this.wsize = 0; /* window size or zero if not using window */
this.whave = 0; /* valid bytes in the window */
this.wnext = 0; /* window write index */
this.window = null; /* allocated sliding window, if needed */
/* bit accumulator */
this.hold = 0; /* input bit accumulator */
this.bits = 0; /* number of bits in "in" */
/* for string and stored block copying */
this.length = 0; /* literal or length of data to copy */
this.offset = 0; /* distance back to copy string from */
/* for table and code decoding */
this.extra = 0; /* extra bits needed */
/* fixed and dynamic code tables */
this.lencode = null; /* starting table for length/literal codes */
this.distcode = null; /* starting table for distance codes */
this.lenbits = 0; /* index bits for lencode */
this.distbits = 0; /* index bits for distcode */
/* dynamic table building */
this.ncode = 0; /* number of code length code lengths */
this.nlen = 0; /* number of length code lengths */
this.ndist = 0; /* number of distance code lengths */
this.have = 0; /* number of code lengths in lens[] */
this.next = null; /* next available space in codes[] */
this.lens = new Uint16Array(320); /* temporary storage for code lengths */
this.work = new Uint16Array(288); /* work area for code table building */
/*
because we don't have pointers in js, we use lencode and distcode directly
as buffers so we don't need codes
*/
//this.codes = new Int32Array(ENOUGH); /* space for code tables */
this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */
this.distdyn = null; /* dynamic table for distance codes (JS specific) */
this.sane = 0; /* if false, allow invalid distance too far */
this.back = 0; /* bits back of last unprocessed length/lit */
this.was = 0; /* initial length of match */
}
const inflateResetKeep = (strm) => {
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
const state = strm.state;
strm.total_in = strm.total_out = state.total = 0;
strm.msg = ''; /*Z_NULL*/
if (state.wrap) { /* to support ill-conceived Java test suite */
strm.adler = state.wrap & 1;
}
state.mode = HEAD;
state.last = 0;
state.havedict = 0;
state.dmax = 32768;
state.head = null/*Z_NULL*/;
state.hold = 0;
state.bits = 0;
//state.lencode = state.distcode = state.next = state.codes;
state.lencode = state.lendyn = new Int32Array(ENOUGH_LENS);
state.distcode = state.distdyn = new Int32Array(ENOUGH_DISTS);
state.sane = 1;
state.back = -1;
//Tracev((stderr, "inflate: reset\n"));
return Z_OK;
};
const inflateReset = (strm) => {
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
const state = strm.state;
state.wsize = 0;
state.whave = 0;
state.wnext = 0;
return inflateResetKeep(strm);
};
const inflateReset2 = (strm, windowBits) => {
let wrap;
/* get the state */
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
const state = strm.state;
/* extract wrap request from windowBits parameter */
if (windowBits < 0) {
wrap = 0;
windowBits = -windowBits;
}
else {
wrap = (windowBits >> 4) + 1;
if (windowBits < 48) {
windowBits &= 15;
}
}
/* set number of window bits, free window if different */
if (windowBits && (windowBits < 8 || windowBits > 15)) {
return Z_STREAM_ERROR;
}
if (state.window !== null && state.wbits !== windowBits) {
state.window = null;
}
/* update state and reset the rest of it */
state.wrap = wrap;
state.wbits = windowBits;
return inflateReset(strm);
};
const inflateInit2 = (strm, windowBits) => {
if (!strm) { return Z_STREAM_ERROR; }
//strm.msg = Z_NULL; /* in case we return an error */
const state = new InflateState();
//if (state === Z_NULL) return Z_MEM_ERROR;
//Tracev((stderr, "inflate: allocated\n"));
strm.state = state;
state.window = null/*Z_NULL*/;
const ret = inflateReset2(strm, windowBits);
if (ret !== Z_OK) {
strm.state = null/*Z_NULL*/;
}
return ret;
};
const inflateInit = (strm) => {
return inflateInit2(strm, DEF_WBITS);
};
/*
Return state with length and distance decoding tables and index sizes set to
fixed code decoding. Normally this returns fixed tables from inffixed.h.
If BUILDFIXED is defined, then instead this routine builds the tables the
first time it's called, and returns those tables the first time and
thereafter. This reduces the size of the code by about 2K bytes, in
exchange for a little execution time. However, BUILDFIXED should not be
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
let virgin = true;
let lenfix, distfix; // We have no pointers in JS, so keep tables separate
const fixedtables = (state) => {
/* build fixed huffman tables if first call (may not be thread safe) */
if (virgin) {
lenfix = new Int32Array(512);
distfix = new Int32Array(32);
/* literal/length table */
let sym = 0;
while (sym < 144) { state.lens[sym++] = 8; }
while (sym < 256) { state.lens[sym++] = 9; }
while (sym < 280) { state.lens[sym++] = 7; }
while (sym < 288) { state.lens[sym++] = 8; }
inflate_table(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 });
/* distance table */
sym = 0;
while (sym < 32) { state.lens[sym++] = 5; }
inflate_table(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 });
/* do this just once */
virgin = false;
}
state.lencode = lenfix;
state.lenbits = 9;
state.distcode = distfix;
state.distbits = 5;
};
/*
Update the window with the last wsize (normally 32K) bytes written before
returning. If window does not exist yet, create it. This is only called
when a window is already in use, or when output has been written during this
inflate call, but the end of the deflate stream has not been reached yet.
It is also called to create a window for dictionary data when a dictionary
is loaded.
Providing output buffers larger than 32K to inflate() should provide a speed
advantage, since only the last 32K of output is copied to the sliding window
upon return from inflate(), and since all distances after the first 32K of
output will fall in the output data, making match copies simpler and faster.
The advantage may be dependent on the size of the processor's data caches.
*/
const updatewindow = (strm, src, end, copy) => {
let dist;
const state = strm.state;
/* if it hasn't been done already, allocate space for the window */
if (state.window === null) {
state.wsize = 1 << state.wbits;
state.wnext = 0;
state.whave = 0;
state.window = new Uint8Array(state.wsize);
}
/* copy state->wsize or less output bytes into the circular window */
if (copy >= state.wsize) {
state.window.set(src.subarray(end - state.wsize, end), 0);
state.wnext = 0;
state.whave = state.wsize;
}
else {
dist = state.wsize - state.wnext;
if (dist > copy) {
dist = copy;
}
//zmemcpy(state->window + state->wnext, end - copy, dist);
state.window.set(src.subarray(end - copy, end - copy + dist), state.wnext);
copy -= dist;
if (copy) {
//zmemcpy(state->window, end - copy, copy);
state.window.set(src.subarray(end - copy, end), 0);
state.wnext = copy;
state.whave = state.wsize;
}
else {
state.wnext += dist;
if (state.wnext === state.wsize) { state.wnext = 0; }
if (state.whave < state.wsize) { state.whave += dist; }
}
}
return 0;
};
const inflate = (strm, flush) => {
let state;
let input, output; // input/output buffers
let next; /* next input INDEX */
let put; /* next output INDEX */
let have, left; /* available input and output */
let hold; /* bit buffer */
let bits; /* bits in bit buffer */
let _in, _out; /* save starting available input and output */
let copy; /* number of stored or match bytes to copy */
let from; /* where to copy match bytes from */
let from_source;
let here = 0; /* current decoding table entry */
let here_bits, here_op, here_val; // paked "here" denormalized (JS specific)
//let last; /* parent table entry */
let last_bits, last_op, last_val; // paked "last" denormalized (JS specific)
let len; /* length to copy for repeats, bits to drop */
let ret; /* return code */
const hbuf = new Uint8Array(4); /* buffer for gzip header crc calculation */
let opts;
let n; // temporary variable for NEED_BITS
const order = /* permutation of code lengths */
new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]);
if (!strm || !strm.state || !strm.output ||
(!strm.input && strm.avail_in !== 0)) {
return Z_STREAM_ERROR;
}
state = strm.state;
if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */
//--- LOAD() ---
put = strm.next_out;
output = strm.output;
left = strm.avail_out;
next = strm.next_in;
input = strm.input;
have = strm.avail_in;
hold = state.hold;
bits = state.bits;
//---
_in = have;
_out = left;
ret = Z_OK;
inf_leave: // goto emulation
for (;;) {
switch (state.mode) {
case HEAD:
if (state.wrap === 0) {
state.mode = TYPEDO;
break;
}
//=== NEEDBITS(16);
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */
state.check = 0/*crc32(0L, Z_NULL, 0)*/;
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = FLAGS;
break;
}
state.flags = 0; /* expect zlib header */
if (state.head) {
state.head.done = false;
}
if (!(state.wrap & 1) || /* check if zlib header allowed */
(((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {
strm.msg = 'incorrect header check';
state.mode = BAD;
break;
}
if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {
strm.msg = 'unknown compression method';
state.mode = BAD;
break;
}
//--- DROPBITS(4) ---//
hold >>>= 4;
bits -= 4;
//---//
len = (hold & 0x0f)/*BITS(4)*/ + 8;
if (state.wbits === 0) {
state.wbits = len;
}
else if (len > state.wbits) {
strm.msg = 'invalid window size';
state.mode = BAD;
break;
}
// !!! pako patch. Force use `options.windowBits` if passed.
// Required to always use max window size by default.
state.dmax = 1 << state.wbits;
//state.dmax = 1 << len;
//Tracev((stderr, "inflate: zlib header ok\n"));
strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
state.mode = hold & 0x200 ? DICTID : TYPE;
//=== INITBITS();
hold = 0;
bits = 0;
//===//
break;
case FLAGS:
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.flags = hold;
if ((state.flags & 0xff) !== Z_DEFLATED) {
strm.msg = 'unknown compression method';
state.mode = BAD;
break;
}
if (state.flags & 0xe000) {
strm.msg = 'unknown header flags set';
state.mode = BAD;
break;
}
if (state.head) {
state.head.text = ((hold >> 8) & 1);
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = TIME;
/* falls through */
case TIME:
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (state.head) {
state.head.time = hold;
}
if (state.flags & 0x0200) {
//=== CRC4(state.check, hold)
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
hbuf[2] = (hold >>> 16) & 0xff;
hbuf[3] = (hold >>> 24) & 0xff;
state.check = crc32(state.check, hbuf, 4, 0);
//===
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = OS;
/* falls through */
case OS:
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (state.head) {
state.head.xflags = (hold & 0xff);
state.head.os = (hold >> 8);
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = EXLEN;
/* falls through */
case EXLEN:
if (state.flags & 0x0400) {
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.length = hold;
if (state.head) {
state.head.extra_len = hold;
}
if (state.flags & 0x0200) {
//=== CRC2(state.check, hold);
hbuf[0] = hold & 0xff;
hbuf[1] = (hold >>> 8) & 0xff;
state.check = crc32(state.check, hbuf, 2, 0);
//===//
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
}
else if (state.head) {
state.head.extra = null/*Z_NULL*/;
}
state.mode = EXTRA;
/* falls through */
case EXTRA:
if (state.flags & 0x0400) {
copy = state.length;
if (copy > have) { copy = have; }
if (copy) {
if (state.head) {
len = state.head.extra_len - state.length;
if (!state.head.extra) {
// Use untyped array for more convenient processing later
state.head.extra = new Uint8Array(state.head.extra_len);
}
state.head.extra.set(
input.subarray(
next,
// extra field is limited to 65536 bytes
// - no need for additional size check
next + copy
),
/*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/
len
);
//zmemcpy(state.head.extra + len, next,
// len + copy > state.head.extra_max ?
// state.head.extra_max - len : copy);
}
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
state.length -= copy;
}
if (state.length) { break inf_leave; }
}
state.length = 0;
state.mode = NAME;
/* falls through */
case NAME:
if (state.flags & 0x0800) {
if (have === 0) { break inf_leave; }
copy = 0;
do {
// TODO: 2 or 1 bytes?
len = input[next + copy++];
/* use constant limit because in js we should not preallocate memory */
if (state.head && len &&
(state.length < 65536 /*state.head.name_max*/)) {
state.head.name += String.fromCharCode(len);
}
} while (len && copy < have);
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
if (len) { break inf_leave; }
}
else if (state.head) {
state.head.name = null;
}
state.length = 0;
state.mode = COMMENT;
/* falls through */
case COMMENT:
if (state.flags & 0x1000) {
if (have === 0) { break inf_leave; }
copy = 0;
do {
len = input[next + copy++];
/* use constant limit because in js we should not preallocate memory */
if (state.head && len &&
(state.length < 65536 /*state.head.comm_max*/)) {
state.head.comment += String.fromCharCode(len);
}
} while (len && copy < have);
if (state.flags & 0x0200) {
state.check = crc32(state.check, input, copy, next);
}
have -= copy;
next += copy;
if (len) { break inf_leave; }
}
else if (state.head) {
state.head.comment = null;
}
state.mode = HCRC;
/* falls through */
case HCRC:
if (state.flags & 0x0200) {
//=== NEEDBITS(16); */
while (bits < 16) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (hold !== (state.check & 0xffff)) {
strm.msg = 'header crc mismatch';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
}
if (state.head) {
state.head.hcrc = ((state.flags >> 9) & 1);
state.head.done = true;
}
strm.adler = state.check = 0;
state.mode = TYPE;
break;
case DICTID:
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
strm.adler = state.check = zswap32(hold);
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = DICT;
/* falls through */
case DICT:
if (state.havedict === 0) {
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
return Z_NEED_DICT;
}
strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;
state.mode = TYPE;
/* falls through */
case TYPE:
if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }
/* falls through */
case TYPEDO:
if (state.last) {
//--- BYTEBITS() ---//
hold >>>= bits & 7;
bits -= bits & 7;
//---//
state.mode = CHECK;
break;
}
//=== NEEDBITS(3); */
while (bits < 3) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.last = (hold & 0x01)/*BITS(1)*/;
//--- DROPBITS(1) ---//
hold >>>= 1;
bits -= 1;
//---//
switch ((hold & 0x03)/*BITS(2)*/) {
case 0: /* stored block */
//Tracev((stderr, "inflate: stored block%s\n",
// state.last ? " (last)" : ""));
state.mode = STORED;
break;
case 1: /* fixed block */
fixedtables(state);
//Tracev((stderr, "inflate: fixed codes block%s\n",
// state.last ? " (last)" : ""));
state.mode = LEN_; /* decode codes */
if (flush === Z_TREES) {
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
break inf_leave;
}
break;
case 2: /* dynamic block */
//Tracev((stderr, "inflate: dynamic codes block%s\n",
// state.last ? " (last)" : ""));
state.mode = TABLE;
break;
case 3:
strm.msg = 'invalid block type';
state.mode = BAD;
}
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
break;
case STORED:
//--- BYTEBITS() ---// /* go to byte boundary */
hold >>>= bits & 7;
bits -= bits & 7;
//---//
//=== NEEDBITS(32); */
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {
strm.msg = 'invalid stored block lengths';
state.mode = BAD;
break;
}
state.length = hold & 0xffff;
//Tracev((stderr, "inflate: stored length %u\n",
// state.length));
//=== INITBITS();
hold = 0;
bits = 0;
//===//
state.mode = COPY_;
if (flush === Z_TREES) { break inf_leave; }
/* falls through */
case COPY_:
state.mode = COPY;
/* falls through */
case COPY:
copy = state.length;
if (copy) {
if (copy > have) { copy = have; }
if (copy > left) { copy = left; }
if (copy === 0) { break inf_leave; }
//--- zmemcpy(put, next, copy); ---
output.set(input.subarray(next, next + copy), put);
//---//
have -= copy;
next += copy;
left -= copy;
put += copy;
state.length -= copy;
break;
}
//Tracev((stderr, "inflate: stored end\n"));
state.mode = TYPE;
break;
case TABLE:
//=== NEEDBITS(14); */
while (bits < 14) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;
//--- DROPBITS(5) ---//
hold >>>= 5;
bits -= 5;
//---//
state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;
//--- DROPBITS(5) ---//
hold >>>= 5;
bits -= 5;
//---//
state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;
//--- DROPBITS(4) ---//
hold >>>= 4;
bits -= 4;
//---//
//#ifndef PKZIP_BUG_WORKAROUND
if (state.nlen > 286 || state.ndist > 30) {
strm.msg = 'too many length or distance symbols';
state.mode = BAD;
break;
}
//#endif
//Tracev((stderr, "inflate: table sizes ok\n"));
state.have = 0;
state.mode = LENLENS;
/* falls through */
case LENLENS:
while (state.have < state.ncode) {
//=== NEEDBITS(3);
while (bits < 3) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);
//--- DROPBITS(3) ---//
hold >>>= 3;
bits -= 3;
//---//
}
while (state.have < 19) {
state.lens[order[state.have++]] = 0;
}
// We have separate tables & no pointers. 2 commented lines below not needed.
//state.next = state.codes;
//state.lencode = state.next;
// Switch to use dynamic table
state.lencode = state.lendyn;
state.lenbits = 7;
opts = { bits: state.lenbits };
ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);
state.lenbits = opts.bits;
if (ret) {
strm.msg = 'invalid code lengths set';
state.mode = BAD;
break;
}
//Tracev((stderr, "inflate: code lengths ok\n"));
state.have = 0;
state.mode = CODELENS;
/* falls through */
case CODELENS:
while (state.have < state.nlen + state.ndist) {
for (;;) {
here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if (here_val < 16) {
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.lens[state.have++] = here_val;
}
else {
if (here_val === 16) {
//=== NEEDBITS(here.bits + 2);
n = here_bits + 2;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
if (state.have === 0) {
strm.msg = 'invalid bit length repeat';
state.mode = BAD;
break;
}
len = state.lens[state.have - 1];
copy = 3 + (hold & 0x03);//BITS(2);
//--- DROPBITS(2) ---//
hold >>>= 2;
bits -= 2;
//---//
}
else if (here_val === 17) {
//=== NEEDBITS(here.bits + 3);
n = here_bits + 3;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
len = 0;
copy = 3 + (hold & 0x07);//BITS(3);
//--- DROPBITS(3) ---//
hold >>>= 3;
bits -= 3;
//---//
}
else {
//=== NEEDBITS(here.bits + 7);
n = here_bits + 7;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
len = 0;
copy = 11 + (hold & 0x7f);//BITS(7);
//--- DROPBITS(7) ---//
hold >>>= 7;
bits -= 7;
//---//
}
if (state.have + copy > state.nlen + state.ndist) {
strm.msg = 'invalid bit length repeat';
state.mode = BAD;
break;
}
while (copy--) {
state.lens[state.have++] = len;
}
}
}
/* handle error breaks in while */
if (state.mode === BAD) { break; }
/* check for end-of-block code (better have one) */
if (state.lens[256] === 0) {
strm.msg = 'invalid code -- missing end-of-block';
state.mode = BAD;
break;
}
/* build code tables -- note: do not change the lenbits or distbits
values here (9 and 6) without reading the comments in inftrees.h
concerning the ENOUGH constants, which depend on those values */
state.lenbits = 9;
opts = { bits: state.lenbits };
ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);
// We have separate tables & no pointers. 2 commented lines below not needed.
// state.next_index = opts.table_index;
state.lenbits = opts.bits;
// state.lencode = state.next;
if (ret) {
strm.msg = 'invalid literal/lengths set';
state.mode = BAD;
break;
}
state.distbits = 6;
//state.distcode.copy(state.codes);
// Switch to use dynamic table
state.distcode = state.distdyn;
opts = { bits: state.distbits };
ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);
// We have separate tables & no pointers. 2 commented lines below not needed.
// state.next_index = opts.table_index;
state.distbits = opts.bits;
// state.distcode = state.next;
if (ret) {
strm.msg = 'invalid distances set';
state.mode = BAD;
break;
}
//Tracev((stderr, 'inflate: codes ok\n'));
state.mode = LEN_;
if (flush === Z_TREES) { break inf_leave; }
/* falls through */
case LEN_:
state.mode = LEN;
/* falls through */
case LEN:
if (have >= 6 && left >= 258) {
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
inflate_fast(strm, _out);
//--- LOAD() ---
put = strm.next_out;
output = strm.output;
left = strm.avail_out;
next = strm.next_in;
input = strm.input;
have = strm.avail_in;
hold = state.hold;
bits = state.bits;
//---
if (state.mode === TYPE) {
state.back = -1;
}
break;
}
state.back = 0;
for (;;) {
here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if (here_bits <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if (here_op && (here_op & 0xf0) === 0) {
last_bits = here_bits;
last_op = here_op;
last_val = here_val;
for (;;) {
here = state.lencode[last_val +
((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((last_bits + here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
//--- DROPBITS(last.bits) ---//
hold >>>= last_bits;
bits -= last_bits;
//---//
state.back += last_bits;
}
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.back += here_bits;
state.length = here_val;
if (here_op === 0) {
//Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
// "inflate: literal '%c'\n" :
// "inflate: literal 0x%02x\n", here.val));
state.mode = LIT;
break;
}
if (here_op & 32) {
//Tracevv((stderr, "inflate: end of block\n"));
state.back = -1;
state.mode = TYPE;
break;
}
if (here_op & 64) {
strm.msg = 'invalid literal/length code';
state.mode = BAD;
break;
}
state.extra = here_op & 15;
state.mode = LENEXT;
/* falls through */
case LENEXT:
if (state.extra) {
//=== NEEDBITS(state.extra);
n = state.extra;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
//--- DROPBITS(state.extra) ---//
hold >>>= state.extra;
bits -= state.extra;
//---//
state.back += state.extra;
}
//Tracevv((stderr, "inflate: length %u\n", state.length));
state.was = state.length;
state.mode = DIST;
/* falls through */
case DIST:
for (;;) {
here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
if ((here_op & 0xf0) === 0) {
last_bits = here_bits;
last_op = here_op;
last_val = here_val;
for (;;) {
here = state.distcode[last_val +
((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];
here_bits = here >>> 24;
here_op = (here >>> 16) & 0xff;
here_val = here & 0xffff;
if ((last_bits + here_bits) <= bits) { break; }
//--- PULLBYTE() ---//
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
//---//
}
//--- DROPBITS(last.bits) ---//
hold >>>= last_bits;
bits -= last_bits;
//---//
state.back += last_bits;
}
//--- DROPBITS(here.bits) ---//
hold >>>= here_bits;
bits -= here_bits;
//---//
state.back += here_bits;
if (here_op & 64) {
strm.msg = 'invalid distance code';
state.mode = BAD;
break;
}
state.offset = here_val;
state.extra = (here_op) & 15;
state.mode = DISTEXT;
/* falls through */
case DISTEXT:
if (state.extra) {
//=== NEEDBITS(state.extra);
n = state.extra;
while (bits < n) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;
//--- DROPBITS(state.extra) ---//
hold >>>= state.extra;
bits -= state.extra;
//---//
state.back += state.extra;
}
//#ifdef INFLATE_STRICT
if (state.offset > state.dmax) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break;
}
//#endif
//Tracevv((stderr, "inflate: distance %u\n", state.offset));
state.mode = MATCH;
/* falls through */
case MATCH:
if (left === 0) { break inf_leave; }
copy = _out - left;
if (state.offset > copy) { /* copy from window */
copy = state.offset - copy;
if (copy > state.whave) {
if (state.sane) {
strm.msg = 'invalid distance too far back';
state.mode = BAD;
break;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
// Trace((stderr, "inflate.c too far\n"));
// copy -= state.whave;
// if (copy > state.length) { copy = state.length; }
// if (copy > left) { copy = left; }
// left -= copy;
// state.length -= copy;
// do {
// output[put++] = 0;
// } while (--copy);
// if (state.length === 0) { state.mode = LEN; }
// break;
//#endif
}
if (copy > state.wnext) {
copy -= state.wnext;
from = state.wsize - copy;
}
else {
from = state.wnext - copy;
}
if (copy > state.length) { copy = state.length; }
from_source = state.window;
}
else { /* copy from output */
from_source = output;
from = put - state.offset;
copy = state.length;
}
if (copy > left) { copy = left; }
left -= copy;
state.length -= copy;
do {
output[put++] = from_source[from++];
} while (--copy);
if (state.length === 0) { state.mode = LEN; }
break;
case LIT:
if (left === 0) { break inf_leave; }
output[put++] = state.length;
left--;
state.mode = LEN;
break;
case CHECK:
if (state.wrap) {
//=== NEEDBITS(32);
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
// Use '|' instead of '+' to make sure that result is signed
hold |= input[next++] << bits;
bits += 8;
}
//===//
_out -= left;
strm.total_out += _out;
state.total += _out;
if (_out) {
strm.adler = state.check =
/*UPDATE(state.check, put - _out, _out);*/
(state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out));
}
_out = left;
// NB: crc32 stored as signed 32-bit int, zswap32 returns signed too
if ((state.flags ? hold : zswap32(hold)) !== state.check) {
strm.msg = 'incorrect data check';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
//Tracev((stderr, "inflate: check matches trailer\n"));
}
state.mode = LENGTH;
/* falls through */
case LENGTH:
if (state.wrap && state.flags) {
//=== NEEDBITS(32);
while (bits < 32) {
if (have === 0) { break inf_leave; }
have--;
hold += input[next++] << bits;
bits += 8;
}
//===//
if (hold !== (state.total & 0xffffffff)) {
strm.msg = 'incorrect length check';
state.mode = BAD;
break;
}
//=== INITBITS();
hold = 0;
bits = 0;
//===//
//Tracev((stderr, "inflate: length matches trailer\n"));
}
state.mode = DONE;
/* falls through */
case DONE:
ret = Z_STREAM_END;
break inf_leave;
case BAD:
ret = Z_DATA_ERROR;
break inf_leave;
case MEM:
return Z_MEM_ERROR;
case SYNC:
/* falls through */
default:
return Z_STREAM_ERROR;
}
}
// inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave"
/*
Return from inflate(), updating the total counts and the check value.
If there was no progress during the inflate() call, return a buffer
error. Call updatewindow() to create and/or update the window state.
Note: a memory error from inflate() is non-recoverable.
*/
//--- RESTORE() ---
strm.next_out = put;
strm.avail_out = left;
strm.next_in = next;
strm.avail_in = have;
state.hold = hold;
state.bits = bits;
//---
if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&
(state.mode < CHECK || flush !== Z_FINISH))) {
if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) {
state.mode = MEM;
return Z_MEM_ERROR;
}
}
_in -= strm.avail_in;
_out -= strm.avail_out;
strm.total_in += _in;
strm.total_out += _out;
state.total += _out;
if (state.wrap && _out) {
strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/
(state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out));
}
strm.data_type = state.bits + (state.last ? 64 : 0) +
(state.mode === TYPE ? 128 : 0) +
(state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);
if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) {
ret = Z_BUF_ERROR;
}
return ret;
};
const inflateEnd = (strm) => {
if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) {
return Z_STREAM_ERROR;
}
let state = strm.state;
if (state.window) {
state.window = null;
}
strm.state = null;
return Z_OK;
};
const inflateGetHeader = (strm, head) => {
/* check state */
if (!strm || !strm.state) { return Z_STREAM_ERROR; }
const state = strm.state;
if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; }
/* save header structure */
state.head = head;
head.done = false;
return Z_OK;
};
const inflateSetDictionary = (strm, dictionary) => {
const dictLength = dictionary.length;
let state;
let dictid;
let ret;
/* check state */
if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR; }
state = strm.state;
if (state.wrap !== 0 && state.mode !== DICT) {
return Z_STREAM_ERROR;
}
/* check for correct dictionary identifier */
if (state.mode === DICT) {
dictid = 1; /* adler32(0, null, 0)*/
/* dictid = adler32(dictid, dictionary, dictLength); */
dictid = adler32(dictid, dictionary, dictLength, 0);
if (dictid !== state.check) {
return Z_DATA_ERROR;
}
}
/* copy dictionary to window using updatewindow(), which will amend the
existing dictionary if appropriate */
ret = updatewindow(strm, dictionary, dictLength, dictLength);
if (ret) {
state.mode = MEM;
return Z_MEM_ERROR;
}
state.havedict = 1;
// Tracev((stderr, "inflate: dictionary set\n"));
return Z_OK;
};
module.exports.inflateReset = inflateReset;
module.exports.inflateReset2 = inflateReset2;
module.exports.inflateResetKeep = inflateResetKeep;
module.exports.inflateInit = inflateInit;
module.exports.inflateInit2 = inflateInit2;
module.exports.inflate = inflate;
module.exports.inflateEnd = inflateEnd;
module.exports.inflateGetHeader = inflateGetHeader;
module.exports.inflateSetDictionary = inflateSetDictionary;
module.exports.inflateInfo = 'pako inflate (from Nodeca project)';
/* Not implemented
module.exports.inflateCopy = inflateCopy;
module.exports.inflateGetDictionary = inflateGetDictionary;
module.exports.inflateMark = inflateMark;
module.exports.inflatePrime = inflatePrime;
module.exports.inflateSync = inflateSync;
module.exports.inflateSyncPoint = inflateSyncPoint;
module.exports.inflateUndermine = inflateUndermine;
*/
},{"./adler32":23,"./constants":24,"./crc32":25,"./inffast":28,"./inftrees":30}],30:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
const MAXBITS = 15;
const ENOUGH_LENS = 852;
const ENOUGH_DISTS = 592;
//const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);
const CODES = 0;
const LENS = 1;
const DISTS = 2;
const lbase = new Uint16Array([ /* Length codes 257..285 base */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
]);
const lext = new Uint8Array([ /* Length codes 257..285 extra */
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78
]);
const dbase = new Uint16Array([ /* Distance codes 0..29 base */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577, 0, 0
]);
const dext = new Uint8Array([ /* Distance codes 0..29 extra */
16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 64, 64
]);
const inflate_table = (type, lens, lens_index, codes, table, table_index, work, opts) =>
{
const bits = opts.bits;
//here = opts.here; /* table entry for duplication */
let len = 0; /* a code's length in bits */
let sym = 0; /* index of code symbols */
let min = 0, max = 0; /* minimum and maximum code lengths */
let root = 0; /* number of index bits for root table */
let curr = 0; /* number of index bits for current table */
let drop = 0; /* code bits to drop for sub-table */
let left = 0; /* number of prefix codes available */
let used = 0; /* code entries in table used */
let huff = 0; /* Huffman code */
let incr; /* for incrementing code, index */
let fill; /* index for replicating entries */
let low; /* low bits for current root entry */
let mask; /* mask for low root bits */
let next; /* next available space in table */
let base = null; /* base value table to use */
let base_index = 0;
// let shoextra; /* extra bits table to use */
let end; /* use base and extra for symbol > end */
const count = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */
const offs = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */
let extra = null;
let extra_index = 0;
let here_bits, here_op, here_val;
/*
Process a set of code lengths to create a canonical Huffman code. The
code lengths are lens[0..codes-1]. Each length corresponds to the
symbols 0..codes-1. The Huffman code is generated by first sorting the
symbols by length from short to long, and retaining the symbol order
for codes with equal lengths. Then the code starts with all zero bits
for the first code of the shortest length, and the codes are integer
increments for the same length, and zeros are appended as the length
increases. For the deflate format, these bits are stored backwards
from their more natural integer increment ordering, and so when the
decoding tables are built in the large loop below, the integer codes
are incremented backwards.
This routine assumes, but does not check, that all of the entries in
lens[] are in the range 0..MAXBITS. The caller must assure this.
1..MAXBITS is interpreted as that code length. zero means that that
symbol does not occur in this code.
The codes are sorted by computing a count of codes for each length,
creating from that a table of starting indices for each length in the
sorted table, and then entering the symbols in order in the sorted
table. The sorted table is work[], with that space being provided by
the caller.
The length counts are used for other purposes as well, i.e. finding
the minimum and maximum length codes, determining if there are any
codes at all, checking for a valid set of lengths, and looking ahead
at length counts to determine sub-table sizes when building the
decoding tables.
*/
/* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
for (len = 0; len <= MAXBITS; len++) {
count[len] = 0;
}
for (sym = 0; sym < codes; sym++) {
count[lens[lens_index + sym]]++;
}
/* bound code lengths, force root to be within code lengths */
root = bits;
for (max = MAXBITS; max >= 1; max--) {
if (count[max] !== 0) { break; }
}
if (root > max) {
root = max;
}
if (max === 0) { /* no symbols to code at all */
//table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */
//table.bits[opts.table_index] = 1; //here.bits = (var char)1;
//table.val[opts.table_index++] = 0; //here.val = (var short)0;
table[table_index++] = (1 << 24) | (64 << 16) | 0;
//table.op[opts.table_index] = 64;
//table.bits[opts.table_index] = 1;
//table.val[opts.table_index++] = 0;
table[table_index++] = (1 << 24) | (64 << 16) | 0;
opts.bits = 1;
return 0; /* no symbols, but wait for decoding to report error */
}
for (min = 1; min < max; min++) {
if (count[min] !== 0) { break; }
}
if (root < min) {
root = min;
}
/* check for an over-subscribed or incomplete set of lengths */
left = 1;
for (len = 1; len <= MAXBITS; len++) {
left <<= 1;
left -= count[len];
if (left < 0) {
return -1;
} /* over-subscribed */
}
if (left > 0 && (type === CODES || max !== 1)) {
return -1; /* incomplete set */
}
/* generate offsets into symbol table for each length for sorting */
offs[1] = 0;
for (len = 1; len < MAXBITS; len++) {
offs[len + 1] = offs[len] + count[len];
}
/* sort symbols by length, by symbol order within each length */
for (sym = 0; sym < codes; sym++) {
if (lens[lens_index + sym] !== 0) {
work[offs[lens[lens_index + sym]]++] = sym;
}
}
/*
Create and fill in decoding tables. In this loop, the table being
filled is at next and has curr index bits. The code being used is huff
with length len. That code is converted to an index by dropping drop
bits off of the bottom. For codes where len is less than drop + curr,
those top drop + curr - len bits are incremented through all values to
fill the table with replicated entries.
root is the number of index bits for the root table. When len exceeds
root, sub-tables are created pointed to by the root entry with an index
of the low root bits of huff. This is saved in low to check for when a
new sub-table should be started. drop is zero when the root table is
being filled, and drop is root when sub-tables are being filled.
When a new sub-table is needed, it is necessary to look ahead in the
code lengths to determine what size sub-table is needed. The length
counts are used for this, and so count[] is decremented as codes are
entered in the tables.
used keeps track of how many table entries have been allocated from the
provided *table space. It is checked for LENS and DIST tables against
the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
the initial root table size constants. See the comments in inftrees.h
for more information.
sym increments through all symbols, and the loop terminates when
all codes of length max, i.e. all codes, have been processed. This
routine permits incomplete codes, so another loop after this one fills
in the rest of the decoding tables with invalid code markers.
*/
/* set up for code type */
// poor man optimization - use if-else instead of switch,
// to avoid deopts in old v8
if (type === CODES) {
base = extra = work; /* dummy value--not used */
end = 19;
} else if (type === LENS) {
base = lbase;
base_index -= 257;
extra = lext;
extra_index -= 257;
end = 256;
} else { /* DISTS */
base = dbase;
extra = dext;
end = -1;
}
/* initialize opts for loop */
huff = 0; /* starting code */
sym = 0; /* starting code symbol */
len = min; /* starting code length */
next = table_index; /* current table to fill in */
curr = root; /* current table index bits */
drop = 0; /* current bits to drop from code for index */
low = -1; /* trigger new sub-table when len > root */
used = 1 << root; /* use root table entries */
mask = used - 1; /* mask for comparing low */
/* check available table space */
if ((type === LENS && used > ENOUGH_LENS) ||
(type === DISTS && used > ENOUGH_DISTS)) {
return 1;
}
/* process all codes and make table entries */
for (;;) {
/* create table entry */
here_bits = len - drop;
if (work[sym] < end) {
here_op = 0;
here_val = work[sym];
}
else if (work[sym] > end) {
here_op = extra[extra_index + work[sym]];
here_val = base[base_index + work[sym]];
}
else {
here_op = 32 + 64; /* end of block */
here_val = 0;
}
/* replicate for those indices with low len bits equal to huff */
incr = 1 << (len - drop);
fill = 1 << curr;
min = fill; /* save offset to next table */
do {
fill -= incr;
table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;
} while (fill !== 0);
/* backwards increment the len-bit code huff */
incr = 1 << (len - 1);
while (huff & incr) {
incr >>= 1;
}
if (incr !== 0) {
huff &= incr - 1;
huff += incr;
} else {
huff = 0;
}
/* go to next symbol, update count, len */
sym++;
if (--count[len] === 0) {
if (len === max) { break; }
len = lens[lens_index + work[sym]];
}
/* create new sub-table if needed */
if (len > root && (huff & mask) !== low) {
/* if first time, transition to sub-tables */
if (drop === 0) {
drop = root;
}
/* increment past last table */
next += min; /* here min is 1 << curr */
/* determine length of next table */
curr = len - drop;
left = 1 << curr;
while (curr + drop < max) {
left -= count[curr + drop];
if (left <= 0) { break; }
curr++;
left <<= 1;
}
/* check for enough space */
used += 1 << curr;
if ((type === LENS && used > ENOUGH_LENS) ||
(type === DISTS && used > ENOUGH_DISTS)) {
return 1;
}
/* point entry in root table to sub-table */
low = huff & mask;
/*table.op[low] = curr;
table.bits[low] = root;
table.val[low] = next - opts.table_index;*/
table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;
}
}
/* fill in remaining table entry if code is incomplete (guaranteed to have
at most one remaining entry, since if the code is incomplete, the
maximum code length that was allowed to get this far is one bit) */
if (huff !== 0) {
//table.op[next + huff] = 64; /* invalid code marker */
//table.bits[next + huff] = len - drop;
//table.val[next + huff] = 0;
table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;
}
/* set return parameters */
//opts.table_index += used;
opts.bits = root;
return 0;
};
module.exports = inflate_table;
},{}],31:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
module.exports = {
2: 'need dictionary', /* Z_NEED_DICT 2 */
1: 'stream end', /* Z_STREAM_END 1 */
0: '', /* Z_OK 0 */
'-1': 'file error', /* Z_ERRNO (-1) */
'-2': 'stream error', /* Z_STREAM_ERROR (-2) */
'-3': 'data error', /* Z_DATA_ERROR (-3) */
'-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */
'-5': 'buffer error', /* Z_BUF_ERROR (-5) */
'-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */
};
},{}],32:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
/* eslint-disable space-unary-ops */
/* Public constants ==========================================================*/
/* ===========================================================================*/
//const Z_FILTERED = 1;
//const Z_HUFFMAN_ONLY = 2;
//const Z_RLE = 3;
const Z_FIXED = 4;
//const Z_DEFAULT_STRATEGY = 0;
/* Possible values of the data_type field (though see inflate()) */
const Z_BINARY = 0;
const Z_TEXT = 1;
//const Z_ASCII = 1; // = Z_TEXT
const Z_UNKNOWN = 2;
/*============================================================================*/
function zero(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }
// From zutil.h
const STORED_BLOCK = 0;
const STATIC_TREES = 1;
const DYN_TREES = 2;
/* The three kinds of block type */
const MIN_MATCH = 3;
const MAX_MATCH = 258;
/* The minimum and maximum match lengths */
// From deflate.h
/* ===========================================================================
* Internal compression state.
*/
const LENGTH_CODES = 29;
/* number of length codes, not counting the special END_BLOCK code */
const LITERALS = 256;
/* number of literal bytes 0..255 */
const L_CODES = LITERALS + 1 + LENGTH_CODES;
/* number of Literal or Length codes, including the END_BLOCK code */
const D_CODES = 30;
/* number of distance codes */
const BL_CODES = 19;
/* number of codes used to transfer the bit lengths */
const HEAP_SIZE = 2 * L_CODES + 1;
/* maximum heap size */
const MAX_BITS = 15;
/* All codes must not exceed MAX_BITS bits */
const Buf_size = 16;
/* size of bit buffer in bi_buf */
/* ===========================================================================
* Constants
*/
const MAX_BL_BITS = 7;
/* Bit length codes must not exceed MAX_BL_BITS bits */
const END_BLOCK = 256;
/* end of block literal code */
const REP_3_6 = 16;
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
const REPZ_3_10 = 17;
/* repeat a zero length 3-10 times (3 bits of repeat count) */
const REPZ_11_138 = 18;
/* repeat a zero length 11-138 times (7 bits of repeat count) */
/* eslint-disable comma-spacing,array-bracket-spacing */
const extra_lbits = /* extra bits for each length code */
new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);
const extra_dbits = /* extra bits for each distance code */
new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);
const extra_blbits = /* extra bits for each bit length code */
new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);
const bl_order =
new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
/* eslint-enable comma-spacing,array-bracket-spacing */
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
/* ===========================================================================
* Local data. These are initialized only once.
*/
// We pre-fill arrays with 0 to avoid uninitialized gaps
const DIST_CODE_LEN = 512; /* see definition of array dist_code below */
// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
const static_ltree = new Array((L_CODES + 2) * 2);
zero(static_ltree);
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
* below).
*/
const static_dtree = new Array(D_CODES * 2);
zero(static_dtree);
/* The static distance tree. (Actually a trivial tree since all codes use
* 5 bits.)
*/
const _dist_code = new Array(DIST_CODE_LEN);
zero(_dist_code);
/* Distance codes. The first 256 values correspond to the distances
* 3 .. 258, the last 256 values correspond to the top 8 bits of
* the 15 bit distances.
*/
const _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
zero(_length_code);
/* length code for each normalized match length (0 == MIN_MATCH) */
const base_length = new Array(LENGTH_CODES);
zero(base_length);
/* First normalized length for each code (0 = MIN_MATCH) */
const base_dist = new Array(D_CODES);
zero(base_dist);
/* First normalized distance for each code (0 = distance of 1) */
function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
this.static_tree = static_tree; /* static tree or NULL */
this.extra_bits = extra_bits; /* extra bits for each code or NULL */
this.extra_base = extra_base; /* base index for extra_bits */
this.elems = elems; /* max number of elements in the tree */
this.max_length = max_length; /* max bit length for the codes */
// show if `static_tree` has data or dummy - needed for monomorphic objects
this.has_stree = static_tree && static_tree.length;
}
let static_l_desc;
let static_d_desc;
let static_bl_desc;
function TreeDesc(dyn_tree, stat_desc) {
this.dyn_tree = dyn_tree; /* the dynamic tree */
this.max_code = 0; /* largest code with non zero frequency */
this.stat_desc = stat_desc; /* the corresponding static tree */
}
const d_code = (dist) => {
return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
};
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
const put_short = (s, w) => {
// put_byte(s, (uch)((w) & 0xff));
// put_byte(s, (uch)((ush)(w) >> 8));
s.pending_buf[s.pending++] = (w) & 0xff;
s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
};
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
const send_bits = (s, value, length) => {
if (s.bi_valid > (Buf_size - length)) {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
put_short(s, s.bi_buf);
s.bi_buf = value >> (Buf_size - s.bi_valid);
s.bi_valid += length - Buf_size;
} else {
s.bi_buf |= (value << s.bi_valid) & 0xffff;
s.bi_valid += length;
}
};
const send_code = (s, c, tree) => {
send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
};
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
const bi_reverse = (code, len) => {
let res = 0;
do {
res |= code & 1;
code >>>= 1;
res <<= 1;
} while (--len > 0);
return res >>> 1;
};
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
const bi_flush = (s) => {
if (s.bi_valid === 16) {
put_short(s, s.bi_buf);
s.bi_buf = 0;
s.bi_valid = 0;
} else if (s.bi_valid >= 8) {
s.pending_buf[s.pending++] = s.bi_buf & 0xff;
s.bi_buf >>= 8;
s.bi_valid -= 8;
}
};
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
const gen_bitlen = (s, desc) =>
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
{
const tree = desc.dyn_tree;
const max_code = desc.max_code;
const stree = desc.stat_desc.static_tree;
const has_stree = desc.stat_desc.has_stree;
const extra = desc.stat_desc.extra_bits;
const base = desc.stat_desc.extra_base;
const max_length = desc.stat_desc.max_length;
let h; /* heap index */
let n, m; /* iterate over the tree elements */
let bits; /* bit length */
let xbits; /* extra bits */
let f; /* frequency */
let overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++) {
s.bl_count[bits] = 0;
}
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
n = s.heap[h];
bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n * 2 + 1]/*.Len*/ = bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code) { continue; } /* not a leaf node */
s.bl_count[bits]++;
xbits = 0;
if (n >= base) {
xbits = extra[n - base];
}
f = tree[n * 2]/*.Freq*/;
s.opt_len += f * (bits + xbits);
if (has_stree) {
s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
}
}
if (overflow === 0) { return; }
// Trace((stderr,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length - 1;
while (s.bl_count[bits] === 0) { bits--; }
s.bl_count[bits]--; /* move one leaf down the tree */
s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
s.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits !== 0; bits--) {
n = s.bl_count[bits];
while (n !== 0) {
m = s.heap[--h];
if (m > max_code) { continue; }
if (tree[m * 2 + 1]/*.Len*/ !== bits) {
// Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
tree[m * 2 + 1]/*.Len*/ = bits;
}
n--;
}
}
};
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
const gen_codes = (tree, max_code, bl_count) =>
// ct_data *tree; /* the tree to decorate */
// int max_code; /* largest code with non zero frequency */
// ushf *bl_count; /* number of codes at each bit length */
{
const next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
let code = 0; /* running code value */
let bits; /* bit index */
let n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
//Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
let len = tree[n * 2 + 1]/*.Len*/;
if (len === 0) { continue; }
/* Now reverse the bits */
tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
// n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
};
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
const tr_static_init = () => {
let n; /* iterates over tree elements */
let bits; /* bit counter */
let length; /* length value */
let code; /* code value */
let dist; /* distance index */
const bl_count = new Array(MAX_BITS + 1);
/* number of codes at each bit length for an optimal tree */
// do check in _tr_init()
//if (static_init_done) return;
/* For some embedded targets, global variables are not initialized: */
/*#ifdef NO_INIT_GLOBAL_POINTERS
static_l_desc.static_tree = static_ltree;
static_l_desc.extra_bits = extra_lbits;
static_d_desc.static_tree = static_dtree;
static_d_desc.extra_bits = extra_dbits;
static_bl_desc.extra_bits = extra_blbits;
#endif*/
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES - 1; code++) {
base_length[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++) {
_length_code[length++] = code;
}
}
//Assert (length == 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
_length_code[length - 1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
base_dist[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++) {
_dist_code[dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for (; code < D_CODES; code++) {
base_dist[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
_dist_code[256 + dist++] = code;
}
}
//Assert (dist == 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) {
bl_count[bits] = 0;
}
n = 0;
while (n <= 143) {
static_ltree[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
while (n <= 255) {
static_ltree[n * 2 + 1]/*.Len*/ = 9;
n++;
bl_count[9]++;
}
while (n <= 279) {
static_ltree[n * 2 + 1]/*.Len*/ = 7;
n++;
bl_count[7]++;
}
while (n <= 287) {
static_ltree[n * 2 + 1]/*.Len*/ = 8;
n++;
bl_count[8]++;
}
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(static_ltree, L_CODES + 1, bl_count);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
static_dtree[n * 2 + 1]/*.Len*/ = 5;
static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
}
// Now data ready and we can init static trees
static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
//static_init_done = true;
};
/* ===========================================================================
* Initialize a new block.
*/
const init_block = (s) => {
let n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
s.opt_len = s.static_len = 0;
s.last_lit = s.matches = 0;
};
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
const bi_windup = (s) =>
{
if (s.bi_valid > 8) {
put_short(s, s.bi_buf);
} else if (s.bi_valid > 0) {
//put_byte(s, (Byte)s->bi_buf);
s.pending_buf[s.pending++] = s.bi_buf;
}
s.bi_buf = 0;
s.bi_valid = 0;
};
/* ===========================================================================
* Copy a stored block, storing first the length and its
* one's complement if requested.
*/
const copy_block = (s, buf, len, header) =>
//DeflateState *s;
//charf *buf; /* the input data */
//unsigned len; /* its length */
//int header; /* true if block header must be written */
{
bi_windup(s); /* align on byte boundary */
if (header) {
put_short(s, len);
put_short(s, ~len);
}
// while (len--) {
// put_byte(s, *buf++);
// }
s.pending_buf.set(s.window.subarray(buf, buf + len), s.pending);
s.pending += len;
};
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
const smaller = (tree, n, m, depth) => {
const _n2 = n * 2;
const _m2 = m * 2;
return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
(tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
};
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
const pqdownheap = (s, tree, k) =>
// deflate_state *s;
// ct_data *tree; /* the tree to restore */
// int k; /* node to move down */
{
const v = s.heap[k];
let j = k << 1; /* left son of k */
while (j <= s.heap_len) {
/* Set j to the smallest of the two sons: */
if (j < s.heap_len &&
smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
j++;
}
/* Exit if v is smaller than both sons */
if (smaller(tree, v, s.heap[j], s.depth)) { break; }
/* Exchange v with the smallest son */
s.heap[k] = s.heap[j];
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
s.heap[k] = v;
};
// inlined manually
// const SMALLEST = 1;
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
const compress_block = (s, ltree, dtree) =>
// deflate_state *s;
// const ct_data *ltree; /* literal tree */
// const ct_data *dtree; /* distance tree */
{
let dist; /* distance of matched string */
let lc; /* match length or unmatched char (if dist == 0) */
let lx = 0; /* running index in l_buf */
let code; /* the code to send */
let extra; /* number of extra bits to send */
if (s.last_lit !== 0) {
do {
dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
lc = s.pending_buf[s.l_buf + lx];
lx++;
if (dist === 0) {
send_code(s, lc, ltree); /* send a literal byte */
//Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = _length_code[lc];
send_code(s, code + LITERALS + 1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra !== 0) {
lc -= base_length[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code = d_code(dist);
//Assert (code < D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra !== 0) {
dist -= base_dist[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
//Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
// "pendingBuf overflow");
} while (lx < s.last_lit);
}
send_code(s, END_BLOCK, ltree);
};
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
const build_tree = (s, desc) =>
// deflate_state *s;
// tree_desc *desc; /* the tree descriptor */
{
const tree = desc.dyn_tree;
const stree = desc.stat_desc.static_tree;
const has_stree = desc.stat_desc.has_stree;
const elems = desc.stat_desc.elems;
let n, m; /* iterate over heap elements */
let max_code = -1; /* largest code with non zero frequency */
let node; /* new node being created */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
s.heap_len = 0;
s.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n * 2]/*.Freq*/ !== 0) {
s.heap[++s.heap_len] = max_code = n;
s.depth[n] = 0;
} else {
tree[n * 2 + 1]/*.Len*/ = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (s.heap_len < 2) {
node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[node * 2]/*.Freq*/ = 1;
s.depth[node] = 0;
s.opt_len--;
if (has_stree) {
s.static_len -= stree[node * 2 + 1]/*.Len*/;
}
/* node is 0 or 1 so it does not have extra bits */
}
desc.max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
node = elems; /* next internal node of the tree */
do {
//pqremove(s, tree, n); /* n = node of least frequency */
/*** pqremove ***/
n = s.heap[1/*SMALLEST*/];
s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
pqdownheap(s, tree, 1/*SMALLEST*/);
/***/
m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
s.heap[--s.heap_max] = m;
/* Create a new node father of n and m */
tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
/* and insert the new node in the heap */
s.heap[1/*SMALLEST*/] = node++;
pqdownheap(s, tree, 1/*SMALLEST*/);
} while (s.heap_len >= 2);
s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(s, desc);
/* The field len is now set, we can generate the bit codes */
gen_codes(tree, max_code, s.bl_count);
};
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
const scan_tree = (s, tree, max_code) =>
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
{
let n; /* iterates over all tree elements */
let prevlen = -1; /* last emitted length */
let curlen; /* length of current code */
let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
let count = 0; /* repeat count of the current code */
let max_count = 7; /* max repeat count */
let min_count = 4; /* min repeat count */
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
if (++count < max_count && curlen === nextlen) {
continue;
} else if (count < min_count) {
s.bl_tree[curlen * 2]/*.Freq*/ += count;
} else if (curlen !== 0) {
if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
} else if (count <= 10) {
s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
} else {
s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen === nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
};
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
const send_tree = (s, tree, max_code) =>
// deflate_state *s;
// ct_data *tree; /* the tree to be scanned */
// int max_code; /* and its largest code of non zero frequency */
{
let n; /* iterates over all tree elements */
let prevlen = -1; /* last emitted length */
let curlen; /* length of current code */
let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
let count = 0; /* repeat count of the current code */
let max_count = 7; /* max repeat count */
let min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
if (++count < max_count && curlen === nextlen) {
continue;
} else if (count < min_count) {
do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
} else if (curlen !== 0) {
if (curlen !== prevlen) {
send_code(s, curlen, s.bl_tree);
count--;
}
//Assert(count >= 3 && count <= 6, " 3_6?");
send_code(s, REP_3_6, s.bl_tree);
send_bits(s, count - 3, 2);
} else if (count <= 10) {
send_code(s, REPZ_3_10, s.bl_tree);
send_bits(s, count - 3, 3);
} else {
send_code(s, REPZ_11_138, s.bl_tree);
send_bits(s, count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen === nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
};
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
const build_bl_tree = (s) => {
let max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
/* Build the bit length tree: */
build_tree(s, s.bl_desc);
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
break;
}
}
/* Update opt_len to include the bit length tree and counts */
s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
// s->opt_len, s->static_len));
return max_blindex;
};
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
const send_all_trees = (s, lcodes, dcodes, blcodes) =>
// deflate_state *s;
// int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
let rank; /* index in bl_order */
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
// "too many codes");
//Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
send_bits(s, dcodes - 1, 5);
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++) {
//Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
}
//Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
//Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
//Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
};
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "black list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
const detect_data_type = (s) => {
/* black_mask is the bit mask of black-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
let black_mask = 0xf3ffc07f;
let n;
/* Check for non-textual ("black-listed") bytes. */
for (n = 0; n <= 31; n++, black_mask >>>= 1) {
if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
return Z_BINARY;
}
}
/* Check for textual ("white-listed") bytes. */
if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
return Z_TEXT;
}
for (n = 32; n < LITERALS; n++) {
if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
return Z_TEXT;
}
}
/* There are no "black-listed" or "white-listed" bytes:
* this stream either is empty or has tolerated ("gray-listed") bytes only.
*/
return Z_BINARY;
};
let static_init_done = false;
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
const _tr_init = (s) =>
{
if (!static_init_done) {
tr_static_init();
static_init_done = true;
}
s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
s.bi_buf = 0;
s.bi_valid = 0;
/* Initialize the first block of the first file: */
init_block(s);
};
/* ===========================================================================
* Send a stored block
*/
const _tr_stored_block = (s, buf, stored_len, last) =>
//DeflateState *s;
//charf *buf; /* input block */
//ulg stored_len; /* length of input block */
//int last; /* one if this is the last block for a file */
{
send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
copy_block(s, buf, stored_len, true); /* with header */
};
/* ===========================================================================
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
const _tr_align = (s) => {
send_bits(s, STATIC_TREES << 1, 3);
send_code(s, END_BLOCK, static_ltree);
bi_flush(s);
};
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
const _tr_flush_block = (s, buf, stored_len, last) =>
//DeflateState *s;
//charf *buf; /* input block, or NULL if too old */
//ulg stored_len; /* length of input block */
//int last; /* one if this is the last block for a file */
{
let opt_lenb, static_lenb; /* opt_len and static_len in bytes */
let max_blindex = 0; /* index of last bit length code of non zero freq */
/* Build the Huffman trees unless a stored block is forced */
if (s.level > 0) {
/* Check if the file is binary or text */
if (s.strm.data_type === Z_UNKNOWN) {
s.strm.data_type = detect_data_type(s);
}
/* Construct the literal and distance trees */
build_tree(s, s.l_desc);
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
// s->static_len));
build_tree(s, s.d_desc);
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
// s->static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(s);
/* Determine the best encoding. Compute the block lengths in bytes. */
opt_lenb = (s.opt_len + 3 + 7) >>> 3;
static_lenb = (s.static_len + 3 + 7) >>> 3;
// Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
// opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
// s->last_lit));
if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
} else {
// Assert(buf != (char*)0, "lost buf");
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
}
if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
_tr_stored_block(s, buf, stored_len, last);
} else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
compress_block(s, static_ltree, static_dtree);
} else {
send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
compress_block(s, s.dyn_ltree, s.dyn_dtree);
}
// Assert (s->compressed_len == s->bits_sent, "bad compressed size");
/* The above check is made mod 2^32, for files larger than 512 MB
* and uLong implemented on 32 bits.
*/
init_block(s);
if (last) {
bi_windup(s);
}
// Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
// s->compressed_len-7*last));
};
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
const _tr_tally = (s, dist, lc) =>
// deflate_state *s;
// unsigned dist; /* distance of matched string */
// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
//let out_length, in_length, dcode;
s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
s.last_lit++;
if (dist === 0) {
/* lc is the unmatched char */
s.dyn_ltree[lc * 2]/*.Freq*/++;
} else {
s.matches++;
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
//Assert((ush)dist < (ush)MAX_DIST(s) &&
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
// (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
}
// (!) This block is disabled in zlib defaults,
// don't enable it for binary compatibility
//#ifdef TRUNCATE_BLOCK
// /* Try to guess if it is profitable to stop the current block here */
// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
// /* Compute an upper bound for the compressed length */
// out_length = s.last_lit*8;
// in_length = s.strstart - s.block_start;
//
// for (dcode = 0; dcode < D_CODES; dcode++) {
// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
// }
// out_length >>>= 3;
// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
// // s->last_lit, in_length, out_length,
// // 100L - out_length*100L/in_length));
// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
// return true;
// }
// }
//#endif
return (s.last_lit === s.lit_bufsize - 1);
/* We avoid equality with lit_bufsize because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
};
module.exports._tr_init = _tr_init;
module.exports._tr_stored_block = _tr_stored_block;
module.exports._tr_flush_block = _tr_flush_block;
module.exports._tr_tally = _tr_tally;
module.exports._tr_align = _tr_align;
},{}],33:[function(require,module,exports){
'use strict';
// (C) 1995-2013 Jean-loup Gailly and Mark Adler
// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
function ZStream() {
/* next input byte */
this.input = null; // JS specific, because we have no pointers
this.next_in = 0;
/* number of bytes available at input */
this.avail_in = 0;
/* total number of input bytes read so far */
this.total_in = 0;
/* next output byte should be put there */
this.output = null; // JS specific, because we have no pointers
this.next_out = 0;
/* remaining free space at output */
this.avail_out = 0;
/* total number of bytes output so far */
this.total_out = 0;
/* last error message, NULL if no error */
this.msg = ''/*Z_NULL*/;
/* not visible by applications */
this.state = null;
/* best guess about the data type: binary or text */
this.data_type = 2/*Z_UNKNOWN*/;
/* adler32 value of the uncompressed data */
this.adler = 0;
}
module.exports = ZStream;
},{}]},{},[9])(9)
});